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ABSTRACT. In this paper, we deal with the concentration of positive solutions
for the fractional Schrédinger-Poisson system involving a logarithmic nonlin-
earity given in the form

€28 (—A)°u+ V(z)u — pu = ulogu? in R3,

2t (=AY p = u? in R3,
where € > 0 is a small parameter, s,t € (0,1) satisfy 4s+ 2t > 3, (—A)”, with
v € {s,t}, is the fractional Laplace operator, and the potential V' is continuous
satisfying only a local condition. By applying suitable variational arguments,
we analyze the existence and concentration behavior of solutions as € — 0 for
the above problem.

1. INTRODUCTION

In recent years, the nonlinear Schrédinger-Poisson system

{—Au +V(2)u+ K(z)pu = f(z,u) in R3,

—A¢ = K(x)u? in R3 (1.1)

has received more and more attention. As a model describing the interaction of a
charge particle with an electromagnetic field, it arises in many mathematical physics
contexts, and is usually known as the Schrodinger-Poisson system. In the case of
f(z,u) = 0, the wave function u represents the steady-state solution of the quan-
tum system proposed by Benci-Fortunato [11], describing the interaction between
charged particles and electromagnetic fields. According to Maxwell’s equation, the
time-independent ¢ is an electrostatic potential and is related to u. Therefore, the
system is also known as the Schrédinger-Maxwell system. In 1998, Benci-Fortunato
[11] first introduced the system (1.1) on a bounded domain and proposed it as a
model to describe the interaction of a charged particle with the electrostatic field by
using deduction and variational methods. For the following stationary Schrodinger-
Poisson system

{_52Au +V(z)u+ K(z)pu = f(z,u) inR?, (1.2)

—e2A¢ = K(z)u? in R3

numerous scholars were dedicated to proving the existence of semiclassical solutions
for this system and the concentration phenomena with respect to the parameter ¢.
When considering the existence of solutions of system (1.2), the following global
conditions on V' are often required which were introduced by Rabinowitz [38]:
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(V) Ve C(R?R) and Voo = lim|y|y00 V(2) > Vi = infeps V(z) > 0.

In 2011, He [23] established the existence of multiple positive solutions by using
the Ljusternik-Schnirelmann theory and proved that these positive solutions con-
centrate around the global minimum of V. He-Zou [24] obtained the existence and
concentration of ground states when the potential V satisfies the global condition
(V) and the nonlinearity has critical growth. The following local conditions on V'
were introduced by del Pino-Felmer [20]:

(V1) There exists V7 > 0 such that V; = inf,cgs V(2).

(V%) There exists an open bounded set  C R? such that

Wi < rg}znV and M={xeQ:V(z)=V}#0.

He-Zou [25] applied Szulkin and Weth’s generalized Nehari manifold methods, pe-
nalization techniques and the Ljusternik-Schnirelmann theory to prove the existence
of multiple solutions when the potential V' satisfies just the local conditions above.
For more results in the direction of the Schrédinger-Poisson system, we refer the
interested reader to the works of Azzollini [9], Chen-Shu-Tang-Wen [15], Cingolani-
Jeanjean [16], Peng [34], Ruiz [39], Zhao-Zhao [19] and the references therein.

In the setting of the fractional Laplacian the system (1.1) becomes the fractional
Schrodinger-Poisson system. Teng [15] studied the existence of ground state solu-
tions for the fractional Schrédinger-Poisson system with critical Sobolev exponent
while Murcia-Siciliano [33] considered the semiclassical state of the system

e (=AY u+V(z)u+ K(x)pu = f(u) in R3,
e (=A)"? ¢ = you? in R3

and established the multiplicity of positive solutions that concentrate on the minima
of V as ¢ — 0 by using the Ljusternik-Schnirelmann category theory. Yang-Yu-Zhao
[47] were concerned with the existence and concentration behavior of ground state
solutions for the fractional Schrodinger-Poisson system with critical nonlinearity.
Ambrosio [6] used penalization techniques and the Ljusternik-Schnirelmann theory
to deal with the multiplicity and concentration of positive solutions for fractional
Schrodinger-Poisson type system with critical growth of type

e2 (=A)’ u+ V(z)u+ ¢(z)u = f(u) + |u/*2u in R3,
g2t (—A)' ¢ = 2 in R3,

where s,t € (0, 1) satisfy 4s+2t > 3, 2% = ﬁ is the critical Sobolev exponent and
the potential V satisfies the local conditions (V}) and (V4). Meng-Zhang-He [31]
dealt with the existence of a positive and a sign-changing least energy solution for a
class of fractional Schrédinger-Poisson systems with critical growth and vanishing
potentials. Other interesting results in this direction can be found in the papers of
Chen-Li-Peng [14], Ji [27], Qu-He [37], Yang-Zhang-Zhao [15]. Here, (—A)", with
v € {s,t}, is the fractional Laplace operator which is defined for any u: R® — R
belonging to the Schwartz class by

(—A) u(z) = C(3,) P.V. / W dy, z€R?

R
where P.V. stands for the Cauchy principal value and C(3,v) is a normalizing
constant, see Di Nezza-Palatucci-Valdinoci [21]. Recently, there is a large interest

in the study of partial differential equations involving nonlocal fractional Laplace
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operators. This type of nonlocal operator comes up naturally in many different
applications, such as phase transitions, game theory, finance, image processing,
Lévy processes, and optimization. For more details and applications, we refer the
interested reader to the works of Applebaum [3], Bahrouni-Radulescu-Winkert [10],
Caffarelli-Silvestre [12], Di Nezza-Palatucci-Valdinoci [21], Molica Bisci-Radulescu-
Servadei [32], Pucci-Xiang-Zhang [35, 36] and the references therein.

Recently, the following time-dependent logarithmic Schrédinger equation given
by

oL
ieo = —e?A® + W (x)® — ®log|®|?, N >3 (1.3)

where ®: [0, +00) x RY — C, has also received a lot of attention due to its physical
influence, such as quantum mechanics, quantum optics, nuclear physics, effective
quantum and Bose-Einstein condensation. Standing wave solutions for (1.3) have
the ansatz form ®(t,2) = u(x)e /¢ with w € R, which leads to the system

—&?Au+V(z)u = ulogu® inRY, (1.4)

where V(z) = W(z) — w. From a mathematical point of view, (1.4) is very in-
teresting because many difficulties arise when using variational methods to find
solutions. Alves-de Morais Filho [2] considered semiclassical state solutions for the
logarithmic elliptic equation (1.4) when V satisfies the following global condition
V(z) € C(RY,R) and Vi = lim V(z) >V, = inf V(z)> —1.
|| =00 zERN

They obtained the existence of solutions of (1.4) as well as the concentration behav-
ior of solutions as € — 0. Alves-Ji [3] continued to study (1.4) where V() satisfies
the following local conditions

(V) V € C(RN,R) and inf,cpgn V(z) = Vo > —1;

(VY) There exists an open bounded set 2 C R such that

-1<V= 1161£V(x) < Halgi)nV and M={zeQ:V(x)=V} #0.

They used the penalization method in order to prove the existence of positive
solutions of (1.4) as well as the concentration behavior under (VY) and (V4). We
also mention the works of Alves-Ambrosio [1], Alves-Ji [4, 5], d’Avenia-Montefusco-
Squassina [17], Ji-Szulkin [28], Tanaka-Zhang [14] and the references therein.

Motivated by the above works, in this paper we consider the existence and con-
centration behavior of solutions for the following logarithmic fractional Schrodinger-
Poisson system

{52 (=AY u+V(z)u — ¢u=ulogu? in R3, (1.5)
g .

2 (—A) ¢ = u? in R3,
where € > 0 is a small parameter, s,t € (0,1) are such that 4s + 2t > 3, and V
satisfies the local conditions

(V1) V € C(R3R) and inf,cps V(z) = Vo > —1;
(V3) There exists an open bounded set 2 C R? such that

1<V = uggV(x) < 1181}an and M ={zeQ:V(zx)="Vy} #0.

The main result in our paper reads as follows.
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Theorem 1.1. Suppose that V satisfies (V1) and (V). Then, there exists g > 0
such that, for each € € (0,eq), the system (1.5) has a positive solution u € H*(R?)
satisfying u?logu® € L*(R®). Moreover, if u. is a solution of (1.5) and y. € R?
denotes a global mazximum point of ue, then

I 2) = Vo
Jim V(ye) = Vo

Our approach is mainly based on variational methods. Nevertheless, due to the
combination of the nonlinear and nonlocal operator (—A)¥ along with the logarith-
mic nonlinearity, several estimates will be more delicate and completely different
from the references mentioned above. Some important points are highlighted below:

(i) Due to the logarithmic term, the associated energy functional of system
(1.5) may take the value +oo, since there is a function u € H*(R3) such
that fRS u?logu? dx = —oo. Thus, the energy functional is not well defined
in H*(R3) and the classical variational methods cannot be applied here. In
order to find solutions of system (1.5), we will make a technical decomposi-
tion to obtain a functional which is a sum of a lower semicontinuous convex
functional and of a C'-functional. Then, a new version of the Mountain
Pass Theorem can be applied to get a (PS) sequence.

(ii) Because of the appearance of two fractional Laplace operators in (1.5), our
analysis becomes more complex and interesting as well as new arguments
have to be taken into account to solve our problem.

(iii) Since V only satisfies the local conditions in (V;) and (V3), we have no
information on the behavior of the potential V' at infinity. So it is com-
plicated to prove the (PS) condition. Due to the presence of the nonlocal
term, we modify the nonlinearity in a special penalization way which is
different from Alves-Ji [3]. Then we can prove that the modified functional
satisfies the (PS) condition. Furthermore, we show that the solution of the
modified problem is in fact a solution of the original problem (1.5) provided
€ > 0 is sufficiently small.

The paper is organized as follows. In Section 2, we recall some lemmas which
will be needed in the paper. Then, in Section 3, we study the auxiliary problem
which is a key point in our approach. Finally, Section 4 is devoted to the proof of
Theorem 1.1.

2. PRELIMINARIES

In this section we present the main tools and notions that will occur in Sections 3
and 4. For A C R?, we denote by |u|a(a) the LI(A)-norm of a function u: R* — R
and by |ul, its LI(R?)-norm. Let us define D*?(R?) as the completion of C°(R?)

with respect to
)|2 dzd
[ e

Then, we consider the fractional Sobolev space
H*(R®*) = {u € L* (R®?) : [u] < oo}
endowed with the norm

lull* = [u]* + |ul3.
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Now, we recall the following main embeddings for the fractional Sobolev spaces,
see Di Nezza-Palatucci-Valdinoci [21].

Lemma 2.1. Let s € (0,1). Then H*(R?) is continuously embedded in LP(R?) for
any p € [2,2%] and compactly embedded in LY (R3?) for any p € [1,27).

In addition, we define by S, the best constant of the Sobolev embedding H*®(R?)
into L2 (R?). We also recall a version of the well-known concentration-compactness
principle, see Felmer-Quaas-Tan [22].

Lemma 2.2. If {u,}nen is a bounded sequence in H*(R3) and if

lim sup / un|? dz =0,
Br(y)

0 yeR3
where R > 0, then u, — 0 in L"(R3) for all r € (2,27).
By Lemma 2.1, we have
H*(R3) C L7 (R3). (2.1)
For any fixed u € H*(R3), let L,: D»?(R3) — R be the functional given by

L,(v) = /RS u*vda,

which is continuous in view of Holder’s inequality and (2.1). Indeed, it holds

342t 1
* 2*
ILu(v)] < ( [l dx) ( / o dx) " < ClulPlolipes,
R3 R3
Jo(z) — ()P
V|32 = // y|3+2t dz dy.

Then, by the Lax-Milgram Theorem, there is a unique ¢!, € D“2(R3) such that
(¢!, v) for each v € D"2(R3), where (-,-) is the inner product on D%?(R?). Thus,
we obtain the t-Riesz formula

2

u s

¢l (x) = c,g/d P ?5|y3)_2t dy, where ¢, =m 2272
ws | T —

where

I'(3 —2t)
NGO
is the only weak solution of the problem
(Al =u? in R3.
In order to study the system (1.5), we use the change of variable x — ex and we
will look for the solutions of the problem

(=AY u+ V(ex)u — ¢u = ulogu? in R3, (2.2)
(-A) ¢ = u? in R3. .

Substituting ¢' = ¢!, into system (2.2), we can rewrite (2.2) as a single equation
(—=A) u+V(ex)u — ¢ u = ulogu® in R (2.3)

Next, we can state the following useful properties whose proofs can be found in
Liu-Zhang [30] and Teng [45].

Lemma 2.3. For all u € H*(R?), then the following properties are valid:
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(1) ||t pee < CM% < Cllull? and [s L u® de < C’t|u|‘%. Moreover

@t : H*(R3) — D“2(R3) is continuous and maps bounded sets into bounded
sets;

(2) ¢t >0 in R3;

) ify € R® and u(z) = u(z +y), then ¢L(z) = ¢! (x +y) and Jgs pLu?de =

Jgs OLu? da;

(4) ¢t, =12¢!, for allT € R;

(5) if up = u in H*(R3), then ¢!, — ¢!, in D"?*(R?);

(6) if up — u in H*(R?), then [ps ¢l v?dz = [o
Jgs @Lu? da + 0n(1);

(7) if up — u in H5(R®), then ¢!, — ¢ in D"?(R3) and [y, ¢!, u?daz —
Jas dhu? da.

We define N: H*(R3) — R by setting
N(u) = / ¢t u? da. (2.4)
R3

Similar to the Brézis-Lieb lemma, N possesses the following properties whose proofs
can be found in Teng [45].

Lemma 2.4. Let N be defined by (2.4). If u, — u in H*(R3) and u,, — u a.e.in
R3, then

) (un —u)? dz +

t
(Un—u

N(up —u) = N(uy) — N(u).

Note that a weak solution of (2.3) in H*(R?) is a critical point of the associated
energy functional

1 1 1
T (u) == —|ju|? - f/ ¢t u? d — f/ u?log u? dz,

2 4 R3 2 R3

defined for all u € H., where
He = {u € H*(R?): / V(ex)u®dr < oo}
R3
is endowed with the norm
l|ul|? = [u]? —|—/ (V(ex) + 1) u? dz.
R3

Obviously, H. is a Hilbert space with inner product

[ () — ) e — o) I
(u,v)g—//Rﬁ ddy+/RB(V(5)+1) dz.

|£L' _ y|3+25

Definition 2.5. A solution of problem (2.3) is a function u € H*(R3) such that
u?logu? € L'(R?) and

// (uz) — u()(v(z) — v(y) dxdy+/ V(ex)uv dz
RS R?

o =y

— | ¢luvda :/ uwvlogu?dz,  for all u,v € C°(R3).
R3 R3
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Due to the lack of smoothness of Z., we shall use the approach explored in Ji-
Szulkin [28] and Squassina-Szulkin [11]. Let us decompose Z. into a sum of a C*
functional plus a convex lower semicontinuous functional, respectively. For § > 0,
we define the functions

0, if&=0
Fi(§) = ¢ —3&%log&? ifo<|{<o
—1¢2 (log 6% +3) +201¢| — 162, if|¢| >4
and
0, if |¢] <o
Fy(§) = .
’ {g%gwwa+%m—¥%¢$,ﬁmzd
Then,

Fo(6) ~ Fu(€) = 56 log€ for all €€ R,

and the functional Z.: H. — (—00, +00] may be rewritten as
T.(u) = O (u) + ¥(u) for u € H,, (2.5)

where

1 1
Bo(u) = ~fuf? — 1 / o Juf? da — / Fy(u) da,
2 4 R3 ]R3
and

U(u) = /R Fiy(u) da.

As proved in Ji-Szulkin [25] and Squassina-Szulkin [11], Fy, F» € C*(R,R). If
6 > 0 is small enough, F} is convex, even,

R(©20 and 0< FOE<F(Q) < FQE foral R (26)

For each fixed p € (2,27), there exists a constant C' > 0 such that
|F(&)| < Cl¢|P~t for all € € R. (2.7)

Note that ®. € CY(H*(R3),R) and V¥ is convex and lower semicontinuous in
H*(R?), but ¥ is not a C! functional due to the unboundedness of R®. Then,
we will seek a critical point in the sense of a sub-differential. Next, we recall some
definitions that can be found in Szulkin [43].

Definition 2.6. Let E be a Banach space, E' be the dual space of E and (-,-) be the
duality paring between E' and E. Let J: E — R be a functional of the form J(u) =
®(u) + V(u), where ® € C1(E,R) and ¥ is convex and lower semicontinuous.

(i) The sub-differential J(u) of the functional J at a point u € E is the set
{weE": (¥ (u),v—u)+ V(v) — U(u) > (w,v—u) for allv € E};

(ii) A eritical point of J is a point u € E such that J(u) < +o00 and 0 € 9J(u),
i.e.

(@' (u),v —u) +¥(v) —¥(u) >0 forallvekE; (2.8)
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(iii) A Palais-Smale sequence at level d ((PS)q sequence for short) for J is a
sequence {un tnen C E such that J(u,) — d and there exists a numerical
sequence T, — 01 with

(@' (un),v — up) + V(v) — ¥(uy) > —7p ||v —uyn||  for allv € E;

(iv) The functional J satisfies the Palais-Smale condition at level d (((PS)q
condition for short)) if all (PS)y sequences have a convergent subsequence;
(v) The effective domain of J is the set D(J) = {u € E: J(u) < +00}.
In what follows, for each u € D(Z.), we set the functional Z/ (u): H. . — R given
by

(ZL(u), z) = (PL(u),z) — /Fl'(u)z dz for all z € H, .,
where
He e = {u € H.: u has compact support}.

Further, we define

IZL(u)]| = sup {(Z'(u), 2) : 2 € Hec and ||z]|lc < 1}.
If ||ZZ(w)|| is finite, then Z.(u) may be extended to a bounded operator in H., and
s0, it can be seen as an element of L.
Lemma 2.7. Let I, satisfies (2.5).

(i) If u € D(Z.) is a critical point of I.. Then, it holds
(®L(u),v —u) + VU(v) —¥(u) >0 forallv € H,,

or equivalently

(U,U*U)s+/R3 Fl(fu)d:vf/1R3 Fl(u)dxz/ Fy(u)(v —u)dx

R3
for allv e H,;

(ii) For each u € D(Z.) such that ||Z.(u)|| < 400, we have OZ (u) # 0, that is,
there exists w € H., which is denoted by w = I.(u), such that

(L (u),v—u)y+ [ Fi(v)dz— [ Fi(u)dz > (w,v—u)
R3 R3
for allv e He;
(iii) If a function w € D(Z;) is a critical point of I., then u is a solution of
(2.3);
(iv) If {untnen C He is a Palais-Smale sequence, then
(I! (un), 2) = on(V)||2]le  for all z € He;

(v) If Q is a bounded domain with regular boundary, then ¥ (and hence Z.) is
of class C' in H*(Q)). More precisely, the functional

U(u) = /QFl(u) dz  for allu € H*(QY)

belongs to C (H*(2),R).
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Proof. (i) This follows from (2.8).

(ii) This can be obtained arguing as in the proof of Squassina-Szulkin [12] and
recalling that C2°(R3) is dense in H..

(iii) and (iv) This can be shown by following the same lines of the proofs of
Ji-Szulkin |

(v) Since |F{(t)] < C(1 + [t]77 1) with ¢ € (2,2%), it is enough to proceed as in
the proof of Willem [16]. O

As a consequence of the above properties, we have the following result.
Lemma 2.8. If u € D(Z.) and | Z.(u)| < +oo, then F](u)u € L'(R3).

Proof. Let @ € C°(R3) be such that 0 < @ < 1 in R3, w(z) =1 for |z| < 1
and w(r) = 0 for [x| > 2. For R > 0 and u € D(Z.), let wr(r) = w(F) and
ur(z) = wr(x)u(z). Let us prove that

lim lugr — ulle = 0. (2.9)

Clearly, ug — u in L?(R3). On the other hand,

fur — ul? <2U/Rﬁ |WR|;E_ |3+2§ B2 dedy

2
//R & — |3+2s| |@r(z) - 1]* dzdy

2[Ag + Bg].

w
e
. 2
R3 |lz—y|>R ‘LU - y| s
|wr(z) — wR(y)|2
e e e ) do

43
<[ u@p(] SR
R3 |lz—y|>R |I - y‘

192 )
+R? LI ®Y g0 gy
lz—y|<R |$ - y|3+25

<C/ lu(z)|? dy /OO ! dr + R~ /Rldr
— RS R 2€+1 0 ’1"23_1

Thus, 0 < Ar — 0. Moreover, B — 0 by the dominated convergence theorem.
Then, (2.9) holds.
From Lemma 2.7 (ii),

We have

(DL (u),ur) + . Fl(w)urdzr = (w,ug) for all w € H.. (2.10)
R
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Then, combining (2.9), (2.10) with Lemma 2.7 (v), we can see that [, F{(u)ugdz <
C for large R > 0. From ugp — u a.e.in R? as R — oo and Fatou’s lemma, we
derive that

/ F/(w)udr <liminf | F/(u)ugdz <liminf [ F|(v)uwgdz < C.
RS

R—oo R3 R— oo R3

This finishes the proof. (Il
An immediate consequence of the last lemma are the following results.

Corollary 2.9. For each u € D(Z.) \ {0} with ||Z.(u)|| < 400, we have that
Zi(wu = [ + [

V(ex)u? da — ol u* do — / u?logu? dz
R3 R3 R?

and
1 / 1 2 1 t, 2
Z.(u) — =Ti(w)u= - | u*dr+ - ¢ u” de.
2 2 R3 4 R3
Corollary 2.10. If {up}tnen C He is a (PS) sequence for I., then T.(up)u, =
on(D|lunlle- If {untnen is bounded, we have

1
T (un) = Ze (un) — 51-; (wn) tn + 0n(1)]|un |

1 1
5 [ader g [ duddeton)]unll.
2 R3 4 R3 "

for all m € N.

Corollary 2.11. If u € H. is a critical point of I. and v € H. verifies F{(u)v €
LY(R3), then Z.(u)v = 0.

Finally, we give a version of the Mountain Pass Theorem without supposing the
(PS) condition for the functional I(u) = ®(u) + ¥(u), where ® € C' and ¥ is
convex and lower semicontinuous. The theorem was first introduced by Alves-de
Morais Filho [2].

Proposition 2.12. Let E be a Banach space and I: E — (—o0,+00] be a func-
tional satisfying
(i) I(u) = I (u)+1z(u) with I, € C*(E,R), and Iy: E — (—00,+q] is convex,
lower semicontinuous and Ia(u) # +00;
(i) 1(0) =0 and [‘BBTO(O) ? by for some ro,by > 0;
(iii) I(e) <0 for some e & By, (0).
Then for given T > 0, there exists u; € E such that
Iy (ur) yw — ur) + In(w) — Iy (ur) > =37 |Jw — u,||  for allw € E,

and
I(u;)€lc—T,c+7],
where
c:=inf sup I(~v(t)),
Inf sup (v(1))
and

I'={y e C([0,1], E): 4(0) = 0,1(~(1)) < 0}.
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Corollary 2.13. Under the conditions of Proposition 2.12, there exists a (PS)

sequence {uptnen C E for I, i.e., for any w € E,
I(up) = ¢ and  (I{(un), w — up) + La(w) — Iy(uy,) > —op ||lw—u,||, (2.11)

with o, — 0T.
3. AN AUXILIARY PROBLEM

In order to prove our main theorem, we will modify problem (2.3) and then
consider the existence of solutions to the auxiliary problem. For our problem,
since the logarithmic nonlinearity fulfills tlogt? +t # o(t) as t — 0 and due to
the occurrence of the nonlocal term ¢!, we cannot apply directly the penalization
argument employed in Del Pino-Felmer [20]. Here, we give a new scheme, which is
proposed in Peng [34].

For u € H. with u > 0, let

Fy(u) = ¢u+ Fy(u).
Choose suitable 0 € (O, %) satisfying Vy + 1 > 460 and define
() = {Fz'(u) if Fi(u) < bu,
Ou if F(u) > Ou,
where V; is given in (V). We put
Gy, u) = xa(2) Fy(u) + (1 = xa(@)) Fl(u),

where xq is the characteristic function of the set €.
For € > 0, we define the auxiliary problem

(=A)° + (V(ex) + 1) u = G (ex,u®) — F (uT) for z € R?, (3.1)
where ™ = max {u(z),0}.

Remark 3.1. Note that if u. is a positive solution of (3.1) satisfying Fi(u) < Ou
for each © € QS, then it is also a positive solution of (2.3) and consequently, the
pair (ue, du,) € H*(R3) x D2(R?) is a positive solution of system (1.5), where
Q={zeR> ez ¢ Q}.

It is clear that weak solutions of (3.1) are positive critical points of the following
energy functional

1
T (u) := 5||u||§ +/ Fi(ut)dz —/ Gs (ex,u™) dz,
R3 R3
in the sub-differential sense while G (ez,u™) is given by
108, lutf + Fy (ut), ifzeQU{Fu) <oub,
G (ex,u™) = ) .
& lut|”, if r € QN < FS(u) > 0u

Let HT be the open subset of H. given by
HE = {ueH.: |supp (uF) NQ|>0}.
The next lemma implies that J. possesses the Mountain Pass geometry.

Lemma 3.2. Assume that (V1) and (Va) hold. Then we have the following:
(i) There exist a, p > 0 such that J-(u) > p with ||ulle = a;
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(ii) There exists e € H. such that |ullc > o and J.(e) < 0.

Proof. Noting that G» (ez,u) = $u? for Q<N {
and Fy(u™) > 0, we have
1 1
gz ghiz-1 [
Q.U{Fs<ou}

which follows from Lemma 2.3 and (2.7) for p € (2,2%) that

o (u) > Hu}, the fact that 6 < Yotl

¢ [ut|? da 7/ Fy (u") da,
Q.U{Fs<ou}
1
Je(u) = 2 |lullZ = Collullz = Crlullz.

The claim follows if we choose p and ||ul| = o small enough.
On the other hand, fixing ¢ € C2°(€2) \ {0}, by Lemma 2.3, we have

Tlolz =T [ gtlePar— 3 [ e lontire) da
g llellz = | oble 5 [, ¢ logllre

Te(79)

2 s 1 2 2
EHSDHE D) ¢~ log(|Tp|") dz
RS

1
<7 (Js«o) 1 [ oLl ar—tosr) [ dx) .
4 Jrs Q.

As 7 — 400, then
\75(7-@) — —09,
and the proof of the lemma is now complete. O

By Proposition 2.12 and Corollary 2.13, there exists a (PS) sequence {uy }nen C
H. of J. at the level c. > 0, where

Ce = 'yléllfa tgl[gﬁ] J=((1)),

and T, := {y € C*([0,1], H.): 7(0) = 0, J-(v(1)) < 0}.
Now, we will prove some results that will be useful in the proof of Theorem 1.1.

Lemma 3.3. For any e > 0, all (PS) sequences of J. are bounded in H..
Proof. We define
A ={Bw <ou}, a2=0in{Fw >0} and A =ALUAZ
Then, it holds
R =Q.UAUAZ=0Q.UA,,
and
Te(un) = Jela. (un) + Tela. (un).

Without any loss of generality we will assume that u,} # 0, because otherwise, we
have the inequality

lunlle <2M.

In the following, we analyze the two cases:
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Case I: For any x € €, inspired by Alves-Ji [5], we have that J.|o, = Zc|a. €
C1(9.,R). Then there is C' > 0 such that

/ u? da + 1/ ¢t u? dr = 27 |o. (un) — T, |a. (Un)un
R3 2 s "
= 2¢e + 0p(1) + 0 (1) [|un |l
<C+o0n(1) [Junll. -
Consequently,
[un]l2 < C +0n (1) Jun]. (3.2)

Instead of the classical logarithmic Sobolev inequality of Lieb-Loss [29], we use
the fractional logarithmic Sobolev inequality recently established by Chatzakou-
Ruzhansky [13]. According to Theorem 1.1 in [13], for any a > 0 and u € H*(R?),
there holds

2

/ u?log <u| > dzx + %(1 +loga)|ul? < C(3,s,a)|(—A)*u)2.
R3 2

Noting that |(—A)%2u|}3 = C, s[u)? and log(u?/|ul?) = logu® — log |u|3, we can

rewrite this inequality as

/ u?log u?dr < /‘@[u]2 + C’K\ug + |u|§ log \u|§, (3.3)
RS

where x can be chosen arbitrarily small by adjusting the parameter a. Choosing
€ (0,1), £ € (0,1), and using the fact that |u,|3 < ||u,||? along with (3.2), the
inequality (3.3) yields

/ w2 log u2 A < Klun)? + Coluin 2 + [t1n]3 g 12
0. (3.4)

1+
< wllunll, +C1 (1 + Jlunllg, )™

)

where

2
Jul?, = //Q 5 |x_ |3£22' drdy+ [ (V) + )
X €
Then by (3.4), we have that

ce +on(1) = Ze|q, (un) — B s|Q (un)un
1 1
>l [ hiomuas
-k 1+
> ———lunlld, — Ca (1 + [unlla.)'™*,

4
which implies that the sequence {u,}nen is bounded for any x € . since k < 1
and 1 +¢ < 2.
Case II: For any x € A.. By the assumption, there exists M > 0 such that for
any n € N,

M = Je|a. (un)

= % ||Un||i€ +/ Fi (u)) dx—/A Gs (ex,u)) da

£ £
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1 2 + Loy +12 +
= lunlly. + Fi (u)) do — ¢! |ut]" do + Fp (uh) ) do
2 °JA. Ar\4
0 2
—3 /A2 ’u,ﬂ dz
1-06 2 + 4 1 t 112
5 Junly, + [ Fr(ur) do— F (ub) daz — 1 ¢, + lut|” do
A A AL

1-06 1 2 2 1 2
2|un||is—2/AE ot 1o i e = ot o

v

where

( )|2 / 2
u = dx dy + Viex) + 1) u” dx.
|| ”A M A, |$ _ y|3+2g Y AL ( ( ) )

Then, for any n € N,
(1- 0)llunl 3. < 2M+/A it log |u | dx—&-%/Al o [ut* dz. (35)
Recalling that for any = € A}, there holds ¢! u < fu, and so
¢t u?dx < Ou? dz. (3.6)
Al Al

Applying the fractional logarithmic Sobolev inequality (3.3) and the estimate (3.6)
o (3.5), we obtain

(1- G)HUHH/Q\E <2M + ﬁ[un]Q + Cﬁ|“n|g + |un|g log \un@

0
—|-f/ \un\Z dz
2 Jus

0
<M 4 a2+ Co (14 o)+ a3,
where we have used the fact that [u,]? < |Ju,|? and |u,|3 < |Ju,]/?, along with
(3.6). Recalling that [un||2 = [Junlly, + [lunlli. and using the boundedness of
lun|lq. derived in Case I, we have

lunll2 < Ca + [lunl3..
Substituting this into the inequality above, we get

3
(1 — 30 ‘5) lunld. < Cs(1+ [lunlla)Fe.

Since 6 € (0, %), we have 1 — %9 > 0. By choosing ¢ > 0 sufficiently small such that

1— 36—k >0, and noting that 1+ ¢ < 2, we conclude that ||u,[s, is bounded.
Therefore, combining the results from Case I and Case II, we have that the

sequence {uy, }pen is bounded in H.. ]

Lemma 3.4. Let {untnen be a (PS) sequence for J.. Then for any ¢ > 0, there
exists r = r({) > R > 0 such that

. [t () — ()| 2
hﬂsiip /RﬂBT (/Rs Wdy—k (V(ez) +1)us | dx < C.
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Proof. We consider r > R and a function ¢ = v, € C§°(R?) such that ¢ = 0 if
z € B,(0), Yy =1if z ¢ B5,(0) with 0 < ¢(z) < 1, and |V¢(z)| < £, where C' is a

constant independent of r, for all z € RV, As {tn }nen is bounded, the sequence
{Yun Fnen is also bounded. This shows that Z. (uy)(Yun) = 0,(1), namely,

// [tn () — un(y )|2w(x)dxd +/ (V(ex) + 1) upip(z) dz
re |T -yt ! )

R3

- / i) do+ [ Flt unbe)do = [ Pt uniie) da
Lt (2) = un(®)) () = D(y))
g

|z — y[3+2s

tn(y) da dy + 0, (1).

We take r > R such that Q. C B,. Then, by (2.6) and the definitions of F/, we
obtain

// () = 2o )|2¢(:E)dxd —|—/ (V(ex) 4+ 1) uep(x) da

R6 |$— |3"‘2g Yy n

<0 / W2(w) do — // (1 () — ny>><w<x>—¢<y>>un(y) way B
R6

|3+25

+0n

Now, we Wlll prove that

lim lim sup //RG Un(7) — un(y)) (W (x) = ¢(y))un(y) dzdy = 0. (3.8)

TS0 n_soo |x — y‘3+25

By Holder’s inequahty and the boundedness of {uy,},en, we have

L _y)y)éﬂf L) ) aray

<//]R° |un|:c - y|3+25 ) <//Rf’ |z — y|3+25|2 Jun () I” dxdy) 2
=¢ (//RG |z — y|3+2s|2 Jun ()] dxdy) ; :

It is enough to prove

o [¥(z) —d(y)* 2
1 1 Up, dzdy =0 3.9
im lmsup//w |l,_ |3+23 [un()I? da dy (3.9)

r—00 n—oo

in order to show that (3.8) is true. Note that RS can be written as
Rﬁ = ((Rd \ BQT) X (Rd \ BQT)) U ((RS \ BQ7>) X BQT) U (BQT X RS)
=X ux?uxsd,



16 L. LI, H. TAO, AND P. WINKERT

[ (@) = vy )
//RG \:c — y|3+2s | n($)| dz dy
[ (@) = vy 2 40 d
X1 |x—y|3+2s |un (2)]” dzdy
[(@) —v(y)® 2 d
X2 |x_ |3+25 | n(x)| x dy
[(@) = vy 2 40 d
x3 |x7 |3+2s |un (2)]” dz dy.

Since 1 = 1 in R?\ By,., we have
Y (x y)I* [un (@)
dzdy = 0. 3.11
//X1 |x7 y|3t2s rdy (3.11)
Let k > 4. Then

X2 = (R*\ Byy) X By C ((R*\ Bgy) x Bay) U((Byyr \ Bar) x Ba,).
Let us observe that, if (z,y) € (]R?’ \ Bk,.) X Bag,., then

S0,

(3.10)

lzl

e =yl 2 la] = Iyl = [a] = 2r > =5
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Taking into account that 0 < ¢ < 1,|Ve| < € and using Holder inequality, we

have .
Jun () [¥(x) — ¥(y)*
//xz |w—y|3+25 dx dy
2 2
:/ d:c/ |un ()] \w(xgﬂ ()| ”
R3\ By Bo, z — g%
2 2
+/ dx/ |un ()] |w(m§+28¢(y)‘ »
By \Bar Bo, ‘37 _ y‘
‘un(l')|2
§25+2s/ e @,
R3\ By Ba, ||3+2s
¢ ‘un(m)‘z
~ q @)
+r2 Bir\Bar x/ o — g2 Y

scﬁ/ |“”§ l' dr + C(k )20*5)/ |ty ()] dz
R\ By, |T[3T2° B\ Bar

2% s
. : 1
< Crd / |up ()] da / ———dz
RO\By., R\ By, |7]2F

Cer(lfs)
+ f/ ()2 dz
r B \Bar

c / %=
— Up (T
S([,, o

¥
. s k2(1—s)
% da + Sl lun (z)|* da
2s
r Bir\Bay
C CkZ(lfs)

=+ 7/ lun (z)]? dz.
k3 r2s By, \Bar "

Fixing § € (0,1), and we have that

n(@)]” [Y(x
// i@ | COR vl 40

Jun (@) [ (2) — ¥(y)I*
: /BQT\BM dx/ |z — yP+es dy (3.13)

Jun (@) [ (2) — ¥(y)”
T e

Let us estimate (3.13). We have

2 2
[ ) ) 0w’
B2, \Bs, R3N{y: |z—y|<r} |aj - y‘ s

C

2s
r BZT\B&‘

2 2
By, \Bsr R3N{y: |z—y|>r} |$ - y‘ s

(3.12)

w‘“

IN

<

[un(2)|* da,

and
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C
< — |up ()] de,
=" J By, \Bs,
which shows that
2 2
/ d:c/ [un(@)] Wxgj(y)‘ dy< < fun(2)? de. (3.14)
Bay\Bs, R3 |z — y[>+2s 7% J B2\ Bs.

By the definition of ¢, € (0,1), and 0 < ¢ < 1,

i) () — 9 (0)
/BJT /1%3 |1' - y|3+28 dy
(@) 2 [9() — (o)
/Bh dx/Rs\B |x— g W

|un
< 4/ dx/ dy (3.15)
Bs.. R3\B,. |z —y|3+2s y|3+2S

o 1

<C |, |? dx/ ——dr
Bs» (1—5)r 71128

= = Jo, ol

where we have used the fact that if (z,y) € Bs, x (R*\ B,), then |z —y| > (1—4)r.
From (3.13), (3.14) and (3.15), one has

// ()] fivta) vty I oy

(3.16)
un)? ot o [ (o)l da
- 7"25 Bay\ B " [(1—08)r]? Jp,, ="
From (3.10), (3.11), (3.12) and (3.16), we obtain
Jun (2) [ [¥(2) = ¥ (y)|*
dzd
[
C CE2(1—s) / 5
<=+ — up(2)|” dz (3.17)
k3 2 Bkr\B27~| ( )|
=) et g ), e
+ — U ()" doe + ————— up(x)|” da.
2 BQT\B(;,.| ()| (DR BM\ ()|
Since {uy, }nen is bounded, by Lemma 2.1, we may assume that w, — u in L%OC (R3)

for some u € H*(R?). Taking the limit as n — oo in (3.17) and applying Holder’s
inequality, we have

: [un (@) [ () — ¢ (y)]*
lim s
1rnbup//]RG 7 — [P dx dy

n— o0
C Ck2(1 s)

s+ —— / |u(x)|? dz
k r Bir\Bar

C / 5 C / )
P CERT Y
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o *
<5+ Ck? / lu(z)| da
k Bir\Bar

1 (M) (5)" (f, e

Since u € L% (R?), k > 4 and § € (0,1), we have

2

o o\ %0
s dx .

lim sup/ lu(z)]? dz = lim sup/ lu(z)]? dz = 0.
r—00  J By, \Bz, r—o0  J B3, \Bs.
Let 6 = % We get
2
lim sup lim sup // [un (@ | [V 2 3 vl dzdy
T—>00 n—00 R6 |1' - y‘ +2s
. 2
< lim limsup | = + Ck? / lu(x)|? da
o0 r—oo k Bir\Bar
2 2

>
o ¥

.
% dx

s 1 2s
23 -
dz +C<k—1> /31 |u(zx)

L / lu(z)
B2r\B1, 1.
k k

2
C 1 \* o\
< s =
< klglgo 3 +C <k’ — 1> ( . lu(z) d:z:) 0,

which shows that (3.9) holds. By (3.7), (3.8), the definition of ¢, the boundedness
of {up tnen and 6 < VOII, we infer that

. . U () — un (y )| 2
lim 1 —d 1 dr =0
iyt [ ([ B2 e ) o=,

which completes the proof. O

Lemma 3.5. The functional J. wverifies the (PS) condition in H. at any level
c. € R.

Proof. Let {untnen be a (PS) sequence for 7. at the level c.. Since {up}nen is
bounded in H., see Lemma 3.3, up to a subsequence, we may assume that

U, = u in H..
By Lemma 3.4, for each ¢ > 0, there is r = ({) > 0 such that

| 1 (@) — s )P o)
lim sup /RS\B (/RS PERE dy + (V(ex) + 1) n) dz < (. (3.18)

n—oo

By (3.18) and the fact that H. — LI (R?) for all r € [2,2%), we can deduce that
up — win L™(R3) for all r € [2,2%). Furthermore, from the definition of G%, Lemma
2.3 and (2.7), one has

Ghex,ulwdr — [ Ghex,uMwdzr for all w € CF°(R?),
RS RS
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Ghy(ex,u)ut dz — | Gh(ex,u™)ut dx,
R? R3

and
Go(ez,u)) dr — Go(ex,ut)dx.
RS RS
Since J!(un)w = 0,(1) for all w € C°(R3), we infer that J/(u)w = o0,(1) for all
w € C*(R?), and thus J-(u)u = 0, that is,

[ ]|? +/ F{(uT)ut dz :/ Gh(ex,ut)ut da.
R3 R3
On the other hand, using the fact that J.(un)u, = 0,(1), namely
Junll+ [ Fitut o= [ Ghlemui)ug do+ o1,
R3 R3
we can deduce that
Junl+ [ FiCufyuf do = Jull + [ Fiat)ut de+ o,(0).
R3 R3

Therefore, u, — w in He and F|(u;)u — F{(um)u® in L'(R?). Applying the
Dominated Convergence Theorem and (2.6), it is easy to check that Fy(u}) —
Fy(u™) in LY(R3). Consequently, 0 € 07-(u) and J-(u) = c.. O

Lemma 3.6. The functional J. has a positive critical point u. € H. such that

s]s(ue) = Cg.

Proof. In view of Lemmas 3.2-3.5, there exists a critical point u. € H. of J. such
that J.(u:) = c¢. for each € > 0. In particular, taking v = u. + 7w with 7 > 0
and w € C(R?) in the definition of a critical point of J., we can prove that
J!(u)w = 0 for all w € CX(R?) and by the density J!(u.)v = 0 for all v € H..
Let us show that u. > 0 in R3. Let u- := min{u.,0}, since J!(u:)us = 0 and
the definitions of F} and G2, we derive that uZ = 0. By performing a Moser
iteration argument (see Lemma 3.13 below) and Silvestre [10], we can prove that
ue € LP(R®) N Cloo’s‘ (R3) for all p € [2,00). From the strong maximum principle in
Silvestre [10], we can conclude that u. > 0 in R?. O

Let us introduce
Nz ={u € D(J) \ {0}: T/ (u)u = 0}.

Lemma 3.7. For each uw € HT, let hy,: RY — R be defined as h, (1) = J-(Tu).
Then, there exists a unique 7, > 0 such that

Ri(T) >0 forT € (0,7,),

hi(t) <0  forT € (Ty,00).
Proof. Arguing as in the proof of Lemma 3.2, we can see that h, (0) = 0, hy,(7) > 0
for 7 > 0 small and h,, (1) < 0 for 7 > 0 large. Hence, max,¢[9,oc) hu(7) is achieved
at some 7 = 7, > 0 such that Al (7,) = 0 and 7,u € N.. Next, we prove the

uniqueness of 7,. Suppose by contradiction that there exist 75 > 7 > 0 such that
hl, (1) = k!, (12) = 0. Thus, for i = 1,2, we have

i |ul|? —/Q F (ru™)ut do — /QC Fl (ru™)ut do + /RN F{ (rut)ut dz =0,

€
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from which we get

E! ut)ut E’ ut)ut F/ (rut)ut
||u||§:/ L () dz+/ Elmt)u? dx—/ Bilr)u” g,
T Qg RN

A Ti Ti

e

Hence,

T2 T1

)l Nyt F +Y 4+
. ( L(rut)ut L (nut)u )dx

/ (Fz’ (rout)ut  Fj (rut) u+>
— dx
Qe

T2 T1
/ F{ (rput)ut  F (rqu™)ut d
= — x.
RN 2 T1

Since u € H7, the left-hand side of the above identity is positive. Concerning the
right-hand side, one has

/ <F1’ (put)u®  Ff (miu?) u*) e
RN T2 T1
:/ (Fl’ (rou™)u™ Iy (r1u™) u+> de
{u+<%} T2 T1
o (Flmne Ry,
{L<ut<t} T2 T1
+/ 2 1Fl’ (rout)u™  F| (mu™)ut d
- x
{u+>i} T2 1
71
_ +12 n\*
- (ut)log | — ) d=
fores) "
2 (42 5
+/ (u*)%og% +2ut ( — (u*)) dz
{%<u+<%} 4 T2
+/ (1 — 1) 26u™ dx.
{ur>2}\72 T

As the right-hand side of the above identity is negative, we get a contradiction and
the proof of the lemma is finished. ([

Remark 3.8. In view of Lemma 3.7, for any u € HT, there exists a unique 1, > 0
such that T,u € N.. On the other hand, if u € N, then v € HT. Otherwise,
|supp (™) N Q| =0 and

WP [ e ede < ulf= [ B utde- [ B () utde
RN Qe RN

<0 u? dx
RN
which implies [u]*+ [on (Vo + 1 — 0) u? dzz < 0 and this gives a contradiction because
Vo+1—02>30>0 andu #Z0.
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Next, we introduce the following system which is called the limit case of (1.5),
that is,

{525 (—A) u+ Vou — ¢pu = ulogu? in R3, (3.19)

g2 (=A) ¢ = u? in R3.

Let us consider the energy functional Zy: H*® (RN ) — (—00, 0] given by

1 2 1 t, 2 1 2 2

§HU||YVO - Z/]R:; puu” dr — 5/]Rgu log u* dx

1 1

Sl =5 [owtdr— [ R+ [ R,
2 Vo 4 R3 RN RN

where Y, = H*® (]RN), with g > —1, is endowed with the norm

lull¥, = [u]” + (u+ D)ful5.

Next, we prove the existence of a ground state for system (3.19).

IU (u)

Lemma 3.9. The system (3.19) has a positive ground state solution uy which fulfills

Toluo) = o= 0, 100 = e plBf o) T PO
where
Mo = {ue D @)\ (0): 2w = gl + 1 [ othuac),
and
D (Zy) = {u € Yy, : Tp(u) < oo}
Proof. We use some ideas found in Squassina-Szulkin [41, 42]. Define

Bou) = glully, = 5 [ dblular— [ P
and note that
U(u) = / Fy(u) de,
R3
then,

Let u € D (Zy) \ {0}.
Step 1: We claim that the map 7 +— Zy(7u) admits a unique maximum point
n (0,00). Indeed, we consider the map 1, : (0,00) — R given by

7_2 7_4 7_2
vu(r) = To(r) = G ulfy, = T [ oo =T [ log(ruds
2 o 4 R3 2 R3

for 7 > 0. It is clear that ,,(7) > 0 for 7 > 0 small and ,(7) < 0 for 7 > 0 large.
Moreover, there exists a unique 7. > 0 such that ¢ (7.) = 0. In fact, for given
u € Yy, one can observe that

Yo (1) = C172 — Oyt — C37%log 7®  and 4, (1) = Cym — Cs57° — Cs7log 2.
We set
h(r) = Cy — Cs72 — Cglog 72,
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then ¢, (1) = 7h(r). Moreover, it is easy to see that h is a decreasing function
in 7 and h possesses the unique zero point 7.. To be more precise, h(7) > 0 for
T € (0,7) and h(r) < 0 for 7 € (7%, +00). Hence, one can conclude that there
exists a unique point 7. > 0 such that ¢, (1) > 0 for 7 € (0,7,) and ¥, (1) < 0 for
T € (Tx, +00). This shows the claim.

Step 2: Since v, (1) = Z)(tu)u, the ray {ru: 7 > 0} intersects the Nehari
manifold Ny at exactly one point. Moreover, there is 79 > 0 such that, for all
u € D(Zo) NSy, 7+ ®p(7u) is increasing in (0, 7p), where S; is the unit sphere in
Yv,. Since 7 — W(7u) is increasing for all 7 > 0 (by convexity), Ny is bounded
away from the origin. Define

Lo ={y € C([0,1],Yy,) : 7(0) = 0,Zo(y(1)) < 0},
and

¢= inf sup Zo(y(t)).
7€l ¢e[0,1)
Since ¥ > 0 and using (2.7), it is easy to verify that there exist a, p > 0 such that
Zo(u) > p for all u € Yy, such that [[ully,, = . In particular, ¢ > p > 0 (and ¢ is
the mountain pass level). Clearly, ¢ < ¢g. Suppose by contradiction that there is
€0 € (O7 g) such that there are no (PS) sequences in

(I0)5+280 ={u € Yy,: ¢ -2 < To(u) < ¢+ 2e0}.

c—2¢gp
Arguing as in the proof of Ji-Szulkin [28], we achieve a contradiction. Since €y may
be chosen arbitrarily small, we can find a sequence {u, }nen such that Zy (u,) — ¢
and 7, (up) — 0.
Step 3: We show that {uy, }nen is bounded in Yy, . Assume that, for some d € R,
it holds Zy (uy,) < d for all n € N. Then

1
/ u? dx + f/ ¢! u? dw = 2To(uy) — L (un)uy < 2d + 0, (1) [[unly., -
R3 2 R3 n Vo
Now, arguing as in the proof of Lemma 3.3 and using inequality (3.4), we see that

1
d+on(1) = Zo(uy) — ZI{)(un)un
1 1
> iy, — 5 [ o togud ds

> Cr (llunlls,, = (U4 Junllveg, )1 €)

which shows that the sequence {u, }nen is bounded in Yy .

Step 4: We prove that there exists a critical point @ # 0 of Zy such that
To(u) < ¢ This fact implies that ug € Ny and that Zg (ug) = ¢ = & Since
{tun}nen is bounded in Yy,, we may assume that u, — v in Yy, u, — u in
LY . (R3) for all p € [1,2%) and u, — u a.e.in R3. Since ¥ is lower semicontinuous

and convex, it is also weakly lower semicontinuous. So ¥(u) < oo and u € D (Zp).
It is easy to check that

0= lim Z{(un)v = Z{(u)v,
n—roo

for all v € C2°(R3). Moreover, by Fatou’s lemma

n— oo

1
¢ = liminf |Zy (u,) — iIé(un)un
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1 1
= lim inf f/ uidx—i—f/ ¢ u?dx
n—oo |2 Jps 4 Jgzs "
1 1
27/ u?de + = ¢! u? dx
2 R3 4 R3

1
= To(u) — ilé(u)u
= I()(U),
which yields Zo(u) < ¢. Now, if u # 0, we are done. Suppose u = 0. If |u,|, — 0,
using Lemma 2.3, (2.6) and (2.7), then
on(1) = I (un) un

= ||un||§,v - / ¢t uidr— | Fy(up)updz+ [ FY(up)u,dz
0 RS RS RS

> lunlff, = Callunliy, = Co [ funt? do

2
= l[unlly,, = Csllunllyy, +0n(1),

which yields ||un||Yv0 — 0 or ”u””YvO must be larger than some positive constants.
If ||un||YV0 must be larger than some positive constants, it contradicts the assump-
tion. So, ||unHYV0 — 0. Taking w = 0 in (2.11), we get ®f (un) (—un) — U (uy,) >
—op, ”u””Yvo’ with o, — 0, and thus ¥ (u,) — 0. Therefore, Zy (u,,) — 0 which
contradicts Zg (un) — € > 0. Thus, |u,|, - 0 and using Lemma 2.2, we can find
(yn) C R3 and § > 0 such that
/ |un|? do > 6.
Bi(yn)

Let @y (x) = up (x + yn). Clearly, Zy (4y,) — ¢ and I, (4y) — 0. Moreover,

/ |, |” dx:/ [un|? dx > 6,
B Bi(yn)

and thus, after passing to a subsequence if necessary, @, — @ # 0 in Yy,. Arguing
as before, we can see that @ is a nontrivial critical point of Zy such that Zy(a) < ¢.
Hence, we have proved that there exists ug € Ny such that Zo(ug) = co.

Step 5: Finally, we show that ug > 0 in R3. Let 7,, > 0 be such that

[[uol]* — [uo)”

Jes ug o + 5 [go O, uf da’
and S0 Ty, |uo| € Np. Since [Jug|] < [uo], and noting that the nonlocal term and the
logarithmic term depend only on u2, we have

To(7|ug|) < Zo(rup) for all 7 > 0.

Let 7y, > 0 be the unique value such that 7j,,|[uo| € No. By the definition of the
ground state level cg, we have

log 7'30 =

Co S IO(T|u0|‘UOD S IO(T|u0|UO) S I‘Irl;i(})(zo(TU()) = I()(UO) = (.

This chain of inequalities implies that Zo(7|,, u0) = Zo(uo). Since the map 7
Zo(Tup) admits a strict global maximum at 7 = 1, we deduce that Tluo| = 1.
Consequently, |ug| € Ny and Zy(|ug|) = co. Therefore, replacing ug by |ug]| if
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necessary, we may assume that ug > 0 in R3. Since the nonlinearity f(u) =
ulogu? satisfies the subcritical growth condition, standard regularity arguments
for fractional elliptic equations (see, for instance, the bootstrap method used in
[1] or [21]) imply that ug € L>(R?). Consequently, by the regularity results in
Silvestre [10], we conclude that wug is continuous. Now, assume by contradiction
that there exists zo € R? such that ug(zg) = 0. Since ug > 0 and ug # 0, the
definition of the fractional Laplacian implies that

s _ uo(y)
(7A) Uuo (I’O) = 70375 P.V. /’]RS W dy < 0.

However, the equation (3.19) gives
(—A)*ug(w0) = —Vouo(zo) + ¢(x0)uo (o) + uo(wo) log ug (o) = 0,

where we used the fact that lim,_,o+ tlogt?> = 0. This leads to a contradiction.
Thus, ug(z) > 0 for all z € R3. The proof is complete. O

Next, we show that the mountain pass level c. is the ground state level of Z. and
we establish an interesting relation between c. and c¢g.

Lemma 3.10. The following hold:
(a) cc > a>0 foralle > 0.

(b) ¢ = infyen. Te(u) for all e > 0.
(¢) limsup,_,yce = co.

Proof. Part (a) follows from Lemma 3.2 (i). In order to prove (b), we take u € N
and let J.(Tu) < 0 for some 7 > 0. Consider . : [0,1] — H. given by 7.(7) = 7-Tu.
Then

ce < max Je (7e(7)) < max, Te(Tu) = Te(u), (3.20)

and by the arbitrariness of u € N, we get ¢, < inf,en. J=(u). Next, we prove the

reverse inequality. By Lemma 3.6, we know that there exists u. € H, with uz > 0
in R3 such that

Je (ug) =c. and 0€ 9T (ue).
Then, u. € N, and it holds
ce = (us) > ulel}\ffg js(u)

Let us prove (c). To this end, let ¢ € C2° (R?) be such that 0 < ¢ <1, ¢ =1 in
By and ¢ =0 in BS. For R > 0, we set ¢r(2) = ¢ (%) and up(z) = ¢r(x)uo(z),
where v is given by Lemma 3.9. Then, we have ur — ug in H*(R3?) as R — oo.
For fixed R > 0, we can proceed as in the proof of (3.20) to obtain that, for a fixed
e >0,
e < max Je (Tugr) = Je(7zur),
7€[0,1]
and

funlt = [ Fletmun g, [ Eumun g, [ Fumun g,
Q RS

Te c Te Te
e 5
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Since V(ex) — Vj as € — 0, by the Lebesgue Dominated Convergence Theorem,
we have from the left-hand side of the above equality that

: 2 2
timn [lur? = [[url,.

Assuming 7. — 400 as ¢ — 0, since 2. — R? as ¢ — 0, it is easy to verify that the
right-hand side of the above equality goes to +00 as ¢ — 0, which is a contradiction.
Thus, 7. is bounded in R for € small enough. Now, we notice that

2

J- (teur) = o (Teur) + %/ (V(ex) — Vo) uk da
R3

—|—/ 28 (teug) dz —I—/ F., (teug) dz — 28 (teug) dz
Q. Q R3

¢
2

< Ty (TrRuR) + %5 / (V(ex) — Vo) uf da,
R3

where g > 0 is such that

Ty (TRuR) = mg())(Io (Tug).

Since sup, ¢, |V(ex) — Vo| — 0 as € — 0, we have

limsup ¢. < limsup J: (7eur) < Zo (TrRug) - (3.21)
0

e—0 e—

Similarly, one can verify that {7r} is also bounded for R large, and therefore
|Tr| < k for some k > 0 and 7 — 79 for some 79 > 0. Recalling that Fy is
increasing on (0 + 00), we have Fy (Trugr) < Fi (kup). Moreover, since ug € Ny,
we can infer that Fy (kug) € L* (Rg). Thus, if R — oo and 7 — 79, by Lebesgue
Dominated Convergence theorem, one has

Fi(trur) — Fi(roup) in L*(R3),
and
F{(Trur)Trur — Fi(Tou¢)m0ue in L'(R3).
We claim that 79 = 1. In fact, using Tpur — Toup in H*(R?), we reach

co < lim Zy (trug) = Zo(Toup) < maxZo(Tug) = Zo(uo) = co,
R—o0 >0

which implies that 7o = 1. Combining this with (3.21), one gets

lim sup ¢ < Zo (ug) = co.
e—0

Insofar as
Te(u) > Z.(u) > Zp(u) foralle > 0,u € D(Je),
and by part (b) with & = 0, the reverse inequality holds, namely

limsupc. > cp.

e—0
Hence,
lim c. = ¢y,
e—0t
which concludes the proof. O

Lemma 3.11. Let {wn}nen C Ny be a sequence satisfying Lo (wn) — co, wy —
w # 0 and Zj(w)w < 0, then w, — w in H*(R3).
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Proof. Since T} (w)w < 0, there is 7 € (0, 1] such that 7w € N and so
co < Ip(Tw)

2 4
—_ w?dz + T ¢t w? dx
2 R3 4 R3

1 1
< lim inf </ w2 dm—i—/ —¢t w2 dx)
n—oo 2 R3 R3 4 "
- 1 2 Ly o
<limsup | = w;, dz + —¢,, w, dz
n—oo 2 R3 R3 4 "
= 25 To(wn)
= Cp-
The above argument yields 7 = 1 and w,, — w in L?(R?). Since {wy, }nen is bounded
in L2 (R?), by interpolation on the Lebesgue spaces, it follows that
Wy, — w in LP(R®) for all p € [2,27),
and therefore [ F} (wy,)wy, dz — [ Fi(w)wdz. Finally, by the equalities Z))(w)w = 0
and
lwnllyy, + /Fl' (wn) wp dz = /Fé (wn) wp, dz,
we get
lwnllyy, = llwllyy, in H*(R?),
from which the desired result follows. O

The next lemma plays an important role in describing the concentration phe-
nomena of solutions with respect to ¢.

Lemma 3.12. Let e, — 0 and u, € H., satisfying J., (un) = cc, and J! (un) =
0. Then there exists a sequence {xy }nen C R3 such that i, = u, (x + x,,) possesses
a convergent subsequence in H*(R3). Moreover, there is xo € Q2 such that

lim ez, =x¢g and V (zo) =W.
n—roo
Proof. From Lemma 3.10 (c), we observe that ¢., — ¢ > 0 as n — oo. Using the

same method in Lemma 3.3, we can prove that {uy }nen is bounded in H,,, .
Step 1: We claim there exist 7, 3 > 0 and a sequence {x, },en C R? such that

limsup/ up (2)|° dz > B.
By (zn)

n—00

Supposing that there is rg such that

limsup/ lun (2)* dz = 0.
By, (zn)

n—oo
Then, by Lemma 2.2, one obtains
U, — 0 in LP(R3) for p € (2,2%).

Thus, we have 7., (u,) = ¢, — 0 as n — oo, which is a contradiction.
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Step 2: Set @, = u, (r + x,), then {G,}nen is bounded and there exists 4 €
H*(R3) such that

U, — @ in H%(R?)
and

/ |@|? do > . (3.22)
B,.(0)

Hence, @ # 0.

Step 3: In what follows, we prove that the sequence {,2, }neny C Q. Arguing
by contradiction and suppose there exist ¢ > 0 and a subsequence of {,2, }nen,
not relabeled, such that

dist (ep2n,Q) >¢ foralln € N.
Then, we can find » > 0 such that
B, (enxn) C Q¢ forall n € N. (3.23)
Choosing a nonnegative sequence {w; };ey C C5°(R?) such that
w; — 4 in H*(R?). (3.24)
For fixed j € N, J! (in)w; = 0, that is,

[ el = ) @) i)
R6
+

o yp+
/R3 (V(enx + enzy) + 1) tpw, da

— G (en® + enp, Uip) w; do — / F (i) w; da.
R3 R3

In view of (3.23) and the definition of G, one has

/ ~
G5 (enx + en@p, Uyn) w; da
RS

= / G (ent + enTn, Up) wj da + / GY (ent + EnTn, Up) wj do
B-(0) Be, (0)

En

< 9/ Upwj da —l—/ Fy () w; dz +/ o unw; dr,
B (0) B, (0) Be, (0)

from which we conclude that

[ k)= ) ) = i) o,
R6
+

|(£ _ y‘3+25
/3 (V (enx + enzy) + 1) w; dz
R

< 9/ Upw; dr + / F} () w; da
B (0) B2 (0)

En

+ / ¢4 tpw;dr — / F () wj dz.
B (0) " RS

En
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Since § < Yol and FY (#,) w; > 0, we obtain

// (tn () — tn(y)) (w; (x) — w;(y)) da:dy+f// fipw; d
RO -

|.’E _ y|3+2s

= / Fy () wy da + / Q%nﬂnwj dz,
C BCT‘ (0)

5 n En

where V = Vy 4+ 1 — 6. By Lemma 2.3, (2.7) and the boundedness of {ii, }nen, we
can infer that

/ Fy (ap)w;dz — 0 and / ¢h Upwidr — 0 asn — oo,
B¢, (0) - (0)

and
U (X) — T, w;i(x) —w; N B
L B s
(a(x) — uly T w;(y - B
—>// |xz( |3-|(-25) i(9)) dxderV/ ww; d.
R6 R3
Therefore,

/| (i) — () (y () —wy0)) [tz
o

|z —y|3+2s RS
Let j — oo in the above inequality, it follows from (3.24) that
[a]2+V/ @ dx =0,
R3
which contradicts (3.22). Therefore, we conclude that {en®n }nen C Q.
Step 4: From this fact, we can find zy € €2 such that
EnTp — Tg aS M — 00.

Following the spirit of (¢) in Lemma 3.10, we can prove that o € Q. Indeed, since
Ty, is a solution, by the definition of G%, for any v € C§°(R?), we have

(tn(z) — Un(y)) (Y(z) — ¥ (y)) )
//Rﬁ dzdy + /]R3 (V (en® + entn) + 1) Uptp do

o -y

< / Fy ()¢ dx +/ ¢h Unt dz — / F () w; da.
R3 R3 R3
Using @, — @ # 0 and &,,z,, — x¢, there holds

(Un () — an(y)) (V(z) — ¥ (y)) N
//Re |z — y[3+2s dxdy"’/RS (V (zo) + 1) aep da

< | Fy(a)ydr+ / Prty da — / Fl(@)w; dz,
R3 R3 R3
which deduces
[a]+/ (V (w0) + 1) @* dz
RS (3.25)
< Fé(ﬁ)ﬂdx—i—/ ¢>ga2dx—/ Fl(@)adz.
R3 R3

R3
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Hence, there exists 71 € (0,1] such that
ﬁﬂeA&@w:{uG}F(Rﬂ\{M4Ihmﬂmu:0}

where

Ty (z0) = 1Hu||§/ - 1/ ¢t u? do — 1/ u?log u? dx.

o) = oMWy T g Jp, P 2 Jas

Denoted by cy (., the least energy of Zy(,,), then

CV (xo) < IV(xO) (Tlﬂ) < hnlglogf jsn (un) = hnni)g})f Ce,, = Co,
which implies that cy(,) < co. Thus we have V (z0) < V4. Since V(z) > Vj for

any z € Q and V(z) > Vp for any x € 99, we infer that V (z¢) = Vo and xo € Q.
Step 5: In the sequel, we are going to prove that

Up — @ in H5(R3).
For each n € N, there exists ¢, € R such that 4, = (,u, € Ny. Then,
co <o (’an) < m>a())( jen (Tan) = s7en (un) = Ce,,-
Then (c) of Lemma 3.10 gives that Zy (4,) — ¢o. Moreover, one can easily prove
that {@y, }nen and {¢,}nen are both bounded. Thus, we can assume ¢, — (o and

Un — 4 = (ot for some o > 0. Similar to (3.25), we can also prove Z{,(@)u < 0.
Then, by applying Lemma 3.11, we have

U, —u in H%(R?),
or equivalently,
Up — @ in H*(R3),
which finishes the proof. (]

The following lemma is crucial in proving that the solutions of the auxiliary
problem (3.1) are the solutions of the original problem (2.3). We shall adopt some
ideas found in Ambrosio [6].

Lemma 3.13. Let {1, }nen be given as in Lemma 3.12. Then {iy, }nen C L (R3)
and there exists K > 0 such that

|tnlooc < K for alln € N,
Moreover, there holds
Un(x) =0 as |z| = +oo.
Proof. For each L > 0, let @y, , := min {u,, L} and denote the function
UT) =L (1) = TTz(Jil) € He,
with ¢ > 1 to be determined later. Note that ¢ is increasing, thus we have
(@ —0b)(€(a) — £(b)) >0 for any a,b € R.

Consider the functions

QW:——wdaﬂ:AMMﬁm
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and note that
1
L(r) > =77 L
(1) = o 'L
Hence, from Lemma 2.1, we obtain
[£(0))* > S L)
In addition, for any a,b € R, it holds

Q'(a—b)(t(a) — (b)) = [L(a) = LB)]*.

In fact, suppose that a > b, it follows from Jensen’s inequality that

Q'(a —b)({(a) — £(b)) = (a — b)(£(a) — £(D))

(a—b /E’

‘(“‘b)/b (£/(7))2 dr

> (/ba L'(1) dT)
= (L(a) = L(b))*.
A similar argument holds if a < b. Thus, we infer that
[£(i)(@) = L)) < (@) = @) (@0 (@75 (@) = )iy ) -

Using /(1) as test function in (3.1), in view of the above inequality and ¢4 >0,
we get that

[£(n)]? + /]R3 (V(ent + enzn) + 1) @270 Y da + /]R3 F (w)itn @27 do

2 > 5;10 |75 (3.26)

i (2) — @ i (2)32 7Y (2) — a1, (y) a2
g//wwn(x) 2) (@75 @) = )i, <y>)dxdy

|z — y[3+2s
' / (Vela) + D a2y do + / Fi (@) iniiy ;) da

< Go(en® + Enp, ﬁn)unuL(‘7 D 4.
R3

By the definition of G}, fixed p € (2,2%), there exists C' > 0 such that
0 < Gh(x,7) <O+ O~ for (2,7) € R® x [0, 00).
The above estimates, (3.26), (V1) and Vo + 1 — 6 > 36 > 0 provide

@ 3. < 028, [Lan)) < 025*/ aray 7Y da. (3.27)
RS

Since upuzL(UL V= ap=2(a,ag )%, we can use (3.27) and Hélder’s inequality to

deduce that

~ ~0—1|2 ~ ~0—1|2
|unuLn <o |un ag o
where
22*
af = — e (2,20).

22

S
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Since wu is bounded, we conclude that

i, ) 5 < 0P Salund] 2
Note that, if @, € L7 (R?), using the fact that iy, ,, < 4y, then
|unt], n1|2§ < J2S*|ﬂn|[272: < 00,
which together with Fatou’s lemma implies
|un|02* < CU2|un|¢m*»
as L — oco. Now, taking o = 2%/a’ > 0, we have
|un|02* <Co

and replacing ¢ by ¢7, j € N, in the above inequality7 we obtain that

1255 < Clo?inl3:

Then, by an argument of induction, we may verlfy that

o

2*0J<UU+ ot L (20) B e

) (3.28)

|un

for every j € N. Note that
— 1 1
— = d = —
i o—1 ™ Z ol (o — 1)

Since o > 1, passing to the limit as j — oo in (3.28), we may infer that u € L>(RY)
and

j=1

fiin]oo < o7 (20)77 i
Using |tin|2: < M, it shows that @, € L*°(R?) and
[tin]oo < K.

In particular, by interpolation, |4,|, < K for all n € N and r € [2,00], and
i, — @ in L"(R?) for all r € [2,00). Now, we notice that i, satisfies

(=A) dy, + 06, < CuP™  in R
Let z, € H*(R?) be such that
(=A)° 2, + 02, = CaP™ in R (3.29)

Applying Del Pezzo-Quaas [15], we can see 0 < i,, < z, in R3. By (3.29), we derive
that

[2n]? + 0] 20|32 = C/ Pz, dz,
R3
and applying the Young’s inequality we get, for all n € (0, 6),

[on? +0\zn|2<n|zn|2+0/ 20-1) 4.

Since [pg Un i2PVdx < Cforalln € N (note that 2(p — 1) > 2), we deduce that
lznll < C for all n € N. Then, up to a subsequence, we may assume that z, — z
in H*(R3). Since @, — @ in L*P~D(R3), it follows from the weak formulation of
the equation solved by z, that z solves

(A’ z+0z=Ca’~' inR%.
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Then, observing that
[2n]? + 02,3 = C’/ bz, da,
R3
and
[2)> +0)z]5 = C/ Pz de,
R3
and that
/ Pz, dz — Ptz da,
R3 R3
we deduce that
[2n]? + 6l 2n3 = [2” + 01213 + 0n (1)
Recalling that H*(R?) is a uniformly convex space, we see that z, — z in H*(R?).

Since CuP~1 < C2P~1 we can see that if we test (3.29) by znzi(’z_l), we can proceed
as before to obtain the estimate

o—1|2 2 p 2(c—1)
|2n2] o 2 < 07C /3 ZnZLm A7,
R.

instead of (3.27). Using |2, |2x < C for all n € N, we can perform the same iteration
argument given above to deduce that

|2n|oo < K for all m € N. (3.30)

By Iannizzotto-Mosconi-Squassina [26] and using (3.30), we deduce that

| znllcoemsy < C forall n € N,

for some a € (0,1) independent of n € N. Combining this fact with z, — z in
L?(R3), we can apply Ambrosio [7] to conclude that lim|,|_ e sup,ep |2n ()| = 0.
This and 0 < @y, < 2z, in R? yield lim;|_ o sup,,ey |tn ()| = 0. O

4. PROOF OF THEOREM 1.1

Lemma 4.1. Let e, — 0 and u, € N, be a solution of (3.1). Then there exists
n* € N such that

Fy(upn)
Up

<0 forallx € Qf and for alln >n*.

Proof. By Lemma 3.12, there exists a sequence {z,}nen C R such that a,(z) =
Up (x 4+ ) has a convergent subsequence and e,x, — xg €  as n — oo. Then,
there exists > 0 such that for any n € N, B, (e,2,,) C €, which implies B » (z,,) C

Q., and Q¢ CR*\ B= (x,). Furthermore, we observe that

~ 2
[ fmot_,
o Jo— P2

~ 2
[ o
lz—y|<1 |Z‘ _y‘

< Cliin|2, + |3,

|6 ()] =

~ 2
M / |un(y:)'a|—2f dy
|[z—y|>1 |$ - yl )
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which, together with Lemma 3.13 and (2.7), implies that for # > 0 given above,
there exist R > 0 and n; € N such that
Fy (i) _ F3 (i)

Un Un

+¢5, <0 forall || > Rand n > ny.

Recall u, (x) = @y, (x + 25,). Then we have

(i)

Un
On the other hand, for given R > 0 above, there exists no € N such that for n > ng

O, CR*\ B= (2,) CR®\ Bg(z5) .

<6 forallx € R®\ Bg(z,) and n > n;.

Taking n* = max {ny,na}, we can conclude that

FZgan>

<0 forallzeQf andn>n".
T n

Now we are in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.6, problem (3.1) has a positive solution . for
each € > 0. Furthermore, Lemma 4.1 implies that there exists €, > 0 small such
that

£y (ue)
Ug
This implies that wu. is a positive solution of (2.3). Letting
x
= ().
we know that w.(z) is a positive solution of the original problem (1.5).
Now, we study the concentration behavior of the solutions. Let ¢, — 0 and
U, € He, be a positive solution with € = ¢, in (3.1). Let @, = u, (x + z,,), where
T, is given in Lemma 3.12. First, we claim that there exists ¢ > 0 such that

<6 forxeQfande e (0,e,).

|tin|oo > 0 for any n € N. (4.1)
Indeed, if |y, |0 — 0, then there is ng € N such that, for all n > ng,
%,
G (enT + enTn, Uin) < ?Oﬁn.
Then,

- - N \% .
Jinli, < il < [ G (et + coman)tndo < 2 [ @
0 " R3 2 R3
Thus @, = 0 for all n > ng, which contradicts the fact that @, — @ # 0. Hence,
(4.1) holds, and we can infer that 4, admits a global maximum point g, € Bg, (0)
for some R, > 0. Set y, := &, (¢n + x,) which is the maximum point of w,(z).
Moreover, regarding from Lemma 3.12, we have that {y, }nen is bounded and

Yn — Yo € asn — 0.
Therefore, we can conclude that
lim V(yn) = V(a?o) = V().

n—oo



LOGARITHMIC FRACTIONAL SCHRODINGER-POISSON SYSTEM 35

ACKNOWLEDGEMENTS

This work is supported by the Research Fund of the National Natural Science

Foundation of China (No. 12361024), the Team Building Project for Graduate
Tutors in Chongging (No. yds223010) and the Natural Science Foundation of
Chongging, China (No. CSTB2024NSCQ-MSX0843).

REFERENCES

[1] C.O. Alves, V. Ambrosio, Concentrating solutions for a fractional p-Laplacian logarithmic

Schrédinger equation, Anal. Appl. (Singap.) 22 (2024), no. 2, 311-349.

[2] C.O. Alves, D.C. de Morais Filho, Ezistence and concentration of positive solutions for a

Schrédinger logarithmic equation, Z. Angew. Math. Phys. 69 (2018), no. 6, Paper No. 144,
22 pp.

[3] C.O. Alves, C. Ji, Ezistence and concentration of positive solutions for a logarithmic

Schrédinger equation via penalization method, Calc. Var. Partial Differential Equations 59
(2020), no. 1, Paper No. 21, 27 pp.

[4] C.O. Alves, C. Ji, Multi-bump positive solutions for a logarithmic Schrédinger equation with

deepening potential well, Sci. China Math. 65 (2022), no. 8, 1577-1598.

[5] C.O. Alves, C. Ji, Multiple positive solutions for a Schrédinger logarithmic equation, Discrete

Contin. Dyn. Syst. 40 (2020), no. 5, 2671-2685.

[6] V. Ambrosio, Multiplicity and concentration results for a class of critical fractional

(7]

(8]

[9]
(10]
(11]
(12]
(13]
(14]
(15]
[16]
(17]
(18]
(19]
[20]
21]
22]

23]

Schrédinger-Poisson systems via penalization method, Commun. Contemp. Math. 22 (2020),
no. 1, 1850078, 45 pp.

V. Ambrosio, On the uniform vanishing property at infinity of W*P-sequences, Nonlinear
Anal. 238 (2024), Paper No. 113398, 17 pp.

D. Applebaum, “Lévy Processes and Stochastic Calculus”, Cambridge University Press, Cam-
bridge, 2009.

A. Azzollini, Concentration and compactness in nonlinear Schridinger-Poisson system with
a general nonlinearity, J. Differential Equations 249 (2010), no. 7, 1746-1763.

A. Bahrouni, V.D. Radulescu, P. Winkert, Robin fractional problems with symmetric variable
growth, J. Math. Phys. 61 (2020), no. 10, 101503, 14 pp.

V. Benci, D. Fortunato, An eigenvalue problem for the Schréodinger-Mazwell equations, Topol.
Methods Nonlinear Anal. 11 (1998), no. 2, 283-293.

L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm.
Partial Differential Equations 32 (2007), no. 7-9, 1245-1260.

M. Chatzakou, M. Ruzhansky, Revised logarithmic Sobolev inequalities of fractional order,
Bull. Sci. Math. 197 (2024), Paper No. 103530, 9 pp.

M. Chen, Q. Li, S. Peng, Bound states for fractional Schrodinger-Poisson system with critical
exponent, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), no. 6, 1819-1835.

S. Chen, M. Shu, X. Tang, L. Wen, Planar Schrodinger-Poisson system with critical expo-
nential growth in the zero mass case, J. Differential Equations 327 (2022), 448-480.

S. Cingolani, L. Jeanjean, Stationary waves with prescribed L?-norm for the planar
Schrédinger-Poisson system, SIAM J. Math. Anal. 51 (2019), no. 4, 3533-3568.

P. d’Avenia, E. Montefusco, M. Squassina, On the logarithmic Schrédinger equation, Com-
mun. Contemp. Math. 16 (2014), no. 2, 1350032, 15 pp.

L.M. Del Pezzo, A. Quaas, Spectrum of the fractional p-Laplacian in RN and decay estimate
for positive solutions of a Schrédinger equation, Nonlinear Anal. 193 (2020), 111479, 24 pp.
M. Del Pino, J. Dolbeault, The optimal Euclidean LP-Sobolev logarithmic inequality, J. Funct.
Anal. 197 (2003), no. 1, 151-161.

M. del Pino, P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded
domains, Calc. Var. Partial Differential Equations 4 (1996), no. 2, 121-137.

E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces,
Bull. Sci. Math. 136 (2012), no. 5, 521-573.

P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schridinger equation with
the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237-1262.
X. He, Multiplicity and concentration of positive solutions for the Schrédinger-Poisson equa-
tions, Z. Angew. Math. Phys. 62 (2011), no. 5, 869-889.



36

[24]
[25]
[26]
27)
(28]
29]

(30]

(31]

(32]
33]

34]

(35]

(36]
37]
(38]
39]
[40]
[41]

[42]

[43]

[44]
[45]
[46]
[47)

(48]

L. LI, H. TAO, AND P. WINKERT

X. He, W. Zou, Ezistence and concentration of ground states for Schrédinger-Poisson equa-
tions with critical growth, J. Math. Phys. 53 (2012), no. 2, 023702, 19 pp.

X. He, W. Zou, Multiplicity of concentrating positive solutions for Schrodinger-Poisson equa-
tions with critical growth, Nonlinear Anal. 170 (2018), 142-170.

A. Tannizzotto, S. Mosconi, M. Squassina, Global Hélder regularity for the fractional p-
Laplacian, Rev. Mat. Iberoam. 32 (2016), no. 4, 1353-1392.

C. Ji, Ground state sign-changing solutions for a class of nonlinear fractional Schrodinger-
Poisson system in R3, Ann. Mat. Pura Appl. (4) 198 (2019), no. 5, 1563-1579.

C. Ji, A. Szulkin, A logarithmic Schrodinger equation with asymptotic conditions on the
potential, J. Math. Anal. Appl. 437 (2016), no. 1, 241-254.

E.H. Lieb, M. Loss, “Analysis”, Second Edition, American Mathematical Society, Providence,
RI, 2001.

Z. Liu, J. Zhang, Multiplicity and concentration of positive solutions for the fractional
Schrodinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var. 23
(2017), no. 4, 1515-1542.

Y. Meng, X. Zhang, X. He, Ground state solutions for a class of fractional Schrédinger-
Poisson system with critical growth and vanishing potentials, Adv. Nonlinear Anal. 10 (2021),
no. 1, 1328-1355.

G. Molica Bisci, V.D. Radulescu, R. Servadei, “Variational Methods for Nonlocal Fractional
Problems”, Cambridge University Press, Cambridge, 2016.

E.G. Murcia, G. Siciliano, Positive semiclassical states for a fractional Schrédinger-Poisson
system, Differential Integral Equations 30 (2017), no. 3-4, 231-258.

X. Peng, Existence and concentration behavior of solutions for the logarithmic Schrodinger-
Poisson system via penalization method, J. Math. Anal. Appl. 513 (2022), no. 2, Paper No.
126249, 24 pp.

P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schridinger-Kirchhoff
type equations involving the fractional p-Laplacian in RN, Calc. Var. Partial Differential
Equations 54 (2015), no. 3, 2785-2806.

P. Pucci, M. Xiang, B. Zhang, Ezistence and multiplicity of entire solutions for fractional
p-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), no. 1, 27-55.

S. Qu, X. He, On the number of concentrating solutions of a fractional Schrédinger-Poisson
system with doubly critical growth, Anal. Math. Phys. 12 (2022), no. 2, Paper No. 59, 49 pp.
P.H. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43
(1992), no. 2, 270-291.

D. Ruiz, The Schrédinger-Poisson equation under the effect of a nonlinear local term, J.
Funct. Anal. 237 (2006), no. 2, 655-674.

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,
Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112.

M. Squassina, A. Szulkin, Multiple solutions to logarithmic Schrédinger equations with peri-
odic potential, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 585-597.

M. Squassina, A. Szulkin, Erratum to: Multiple solutions to logarithmic Schrédinger equa-
tions with periodic potential [MR3385171], Calc. Var. Partial Differential Equations 56
(2017), no. 3, Paper No. 56, 4 pp.

A. Szulkin, Minimax principles for lower semicontinuous functions and applications to non-
linear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 2,
77-109.

K. Tanaka, C. Zhang, Multi-bump solutions for logarithmic Schrédinger equations, Calc. Var.
Partial Differential Equations 56 (2017), no. 2, Paper No. 33, 35 pp.

K. Teng, Existence of ground state solutions for the nonlinear fractional Schrédinger-Poisson
system with critical Sobolev exponent, J. Differential Equations 261 (2016), no. 6, 3061-3106.
M. Willem, “Minimax Theorems”, Birkh&duser Boston, Inc., Boston, MA, 1996.

Z. Yang, Y. Yu, F. Zhao, Concentration behavior of ground state solutions for a frac-
tional Schréodinger-Poisson system involving critical exponent, Commun. Contemp. Math.
21 (2019), no. 6, 1850027, 46 pp.

Z. Yang, W. Zhang, F. Zhao, Ezistence and concentration results for fractional Schrodinger-
Poisson system via penalization method, Electron. J. Differential Equations 2021, Paper No.
14, 31 pp.



LOGARITHMIC FRACTIONAL SCHRODINGER-POISSON SYSTEM 37

[49] L. Zhao, F. Zhao, On the existence of solutions for the Schrédinger-Poisson equations, J.
Math. Anal. Appl. 346 (2008), no. 1, 155-169.

(L. Li) SCHOOL OF MATHEMATICS AND STATISTICS & CHONGQING KEY LABORATORY OF STA-
TISTICAL INTELLIGENT COMPUTING AND MONITORING, CHONGQING TECHNOLOGY AND BUSINESS
UNIVERSITY, CHONGQING 400067, CHINA

Email address: 1inli@ctbu.edu.cn,1ilin4200gmail.com

(H. Tao) CHONGQING ZHONGXIAN NO.1 SECONDARY SCHOOL, CHONGQING 404300, CHINA
Email address: 924585649Q@qq . com

(P. Winkert) TECHNISCHE UNIVERSITAT BERLIN, INSTITUT FUR MATHEMATIK, STRASSE DES 17.
JUNI 136, 10623 BERLIN, GERMANY
Email address: winkert@math.tu-berlin.de



	1. Introduction
	2. Preliminaries
	3. An auxiliary problem
	4. Proof of Theorem 1.1
	Acknowledgements
	References

