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Abstract. In this paper, we deal with the concentration of positive solutions

for the fractional Schrödinger-Poisson system involving a logarithmic nonlin-
earity given in the form{

ε2s (−∆)s u+ V (x)u− ϕu = u log u2 in R3,

ε2t (−∆)t ϕ = u2 in R3,

where ε > 0 is a small parameter, s, t ∈ (0, 1) satisfy 4s+2t > 3, (−∆)ν , with

ν ∈ {s, t}, is the fractional Laplace operator, and the potential V is continuous

satisfying only a local condition. By applying suitable variational arguments,
we analyze the existence and concentration behavior of solutions as ε → 0 for

the above problem.

1. Introduction

In recent years, the nonlinear Schrödinger-Poisson system{
−∆u+ V (x)u+K(x)ϕu = f(x, u) in R3,

−∆ϕ = K(x)u2 in R3
(1.1)

has received more and more attention. As a model describing the interaction of a
charge particle with an electromagnetic field, it arises in many mathematical physics
contexts, and is usually known as the Schrödinger-Poisson system. In the case of
f(x, u) = 0, the wave function u represents the steady-state solution of the quan-
tum system proposed by Benci-Fortunato [11], describing the interaction between
charged particles and electromagnetic fields. According to Maxwell’s equation, the
time-independent ϕ is an electrostatic potential and is related to u. Therefore, the
system is also known as the Schrödinger-Maxwell system. In 1998, Benci-Fortunato
[11] first introduced the system (1.1) on a bounded domain and proposed it as a
model to describe the interaction of a charged particle with the electrostatic field by
using deduction and variational methods. For the following stationary Schrödinger-
Poisson system {

−ε2∆u+ V (x)u+K(x)ϕu = f(x, u) in R3,

−ε2∆ϕ = K(x)u2 in R3
(1.2)

numerous scholars were dedicated to proving the existence of semiclassical solutions
for this system and the concentration phenomena with respect to the parameter ε.
When considering the existence of solutions of system (1.2), the following global
conditions on V are often required which were introduced by Rabinowitz [38]:
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(V) V ∈ C(R3,R) and V∞ = lim|x|→∞ V (x) > V∗ = infx∈R3 V (x) > 0.

In 2011, He [23] established the existence of multiple positive solutions by using
the Ljusternik-Schnirelmann theory and proved that these positive solutions con-
centrate around the global minimum of V . He-Zou [24] obtained the existence and
concentration of ground states when the potential V satisfies the global condition
(V) and the nonlinearity has critical growth. The following local conditions on V
were introduced by del Pino-Felmer [20]:

(V′
1) There exists V1 > 0 such that V1 = infx∈R3 V (x).

(V′
2) There exists an open bounded set Ω ⊂ R3 such that

V1 < min
∂Ω

V and M = {x ∈ Ω: V (x) = V1} ̸= ∅.

He-Zou [25] applied Szulkin and Weth’s generalized Nehari manifold methods, pe-
nalization techniques and the Ljusternik-Schnirelmann theory to prove the existence
of multiple solutions when the potential V satisfies just the local conditions above.
For more results in the direction of the Schrödinger-Poisson system, we refer the
interested reader to the works of Azzollini [9], Chen-Shu-Tang-Wen [15], Cingolani-
Jeanjean [16], Peng [34], Ruiz [39], Zhao-Zhao [49] and the references therein.

In the setting of the fractional Laplacian the system (1.1) becomes the fractional
Schrödinger-Poisson system. Teng [45] studied the existence of ground state solu-
tions for the fractional Schrödinger-Poisson system with critical Sobolev exponent
while Murcia-Siciliano [33] considered the semiclassical state of the system{

ε2s (−∆)
s
u+ V (x)u+K(x)ϕu = f(u) in R3,

εθ (−∆)
α/2

ϕ = γαu
2 in R3

and established the multiplicity of positive solutions that concentrate on the minima
of V as ε→ 0 by using the Ljusternik-Schnirelmann category theory. Yang-Yu-Zhao
[47] were concerned with the existence and concentration behavior of ground state
solutions for the fractional Schrödinger-Poisson system with critical nonlinearity.
Ambrosio [6] used penalization techniques and the Ljusternik-Schnirelmann theory
to deal with the multiplicity and concentration of positive solutions for fractional
Schrödinger-Poisson type system with critical growth of type{

ε2s (−∆)
s
u+ V (x)u+ ϕ(x)u = f(u) + |u|2∗s−2u in R3,

ε2t (−∆)
t
ϕ = u2 in R3,

where s, t ∈ (0, 1) satisfy 4s+2t > 3, 2∗s = 6
3−2s is the critical Sobolev exponent and

the potential V satisfies the local conditions (V′
1) and (V′

2). Meng-Zhang-He [31]
dealt with the existence of a positive and a sign-changing least energy solution for a
class of fractional Schrödinger-Poisson systems with critical growth and vanishing
potentials. Other interesting results in this direction can be found in the papers of
Chen-Li-Peng [14], Ji [27], Qu-He [37], Yang-Zhang-Zhao [48]. Here, (−∆)

ν
, with

ν ∈ {s, t}, is the fractional Laplace operator which is defined for any u : R3 → R
belonging to the Schwartz class by

(−∆)νu(x) = C(3, ν) P.V.

∫
R3

u(x)− u(y)

|x− y|3+2ν
dy, x ∈ R3,

where P.V. stands for the Cauchy principal value and C(3, ν) is a normalizing
constant, see Di Nezza-Palatucci-Valdinoci [21]. Recently, there is a large interest
in the study of partial differential equations involving nonlocal fractional Laplace
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operators. This type of nonlocal operator comes up naturally in many different
applications, such as phase transitions, game theory, finance, image processing,
Lévy processes, and optimization. For more details and applications, we refer the
interested reader to the works of Applebaum [8], Bahrouni-Rădulescu-Winkert [10],
Caffarelli-Silvestre [12], Di Nezza-Palatucci-Valdinoci [21], Molica Bisci-Rădulescu-
Servadei [32], Pucci-Xiang-Zhang [35, 36] and the references therein.

Recently, the following time-dependent logarithmic Schrödinger equation given
by

iε
∂Φ

∂t
= −ε2∆Φ+W (x)Φ− Φ log |Φ|2, N ≥ 3 (1.3)

where Φ: [0,+∞)×RN → C, has also received a lot of attention due to its physical
influence, such as quantum mechanics, quantum optics, nuclear physics, effective
quantum and Bose-Einstein condensation. Standing wave solutions for (1.3) have
the ansatz form Φ(t, x) = u(x)e−iωt/ε with ω ∈ R, which leads to the system

−ε2∆u+ V (x)u = u log u2 in RN , (1.4)

where V (x) = W (x) − ω. From a mathematical point of view, (1.4) is very in-
teresting because many difficulties arise when using variational methods to find
solutions. Alves-de Morais Filho [2] considered semiclassical state solutions for the
logarithmic elliptic equation (1.4) when V satisfies the following global condition

V (x) ∈ C(RN ,R) and V∞ = lim
|x|→∞

V (x) > V∗ = inf
x∈RN

V (x) > −1.

They obtained the existence of solutions of (1.4) as well as the concentration behav-
ior of solutions as ε→ 0. Alves-Ji [3] continued to study (1.4) where V (x) satisfies
the following local conditions

(V′′
1) V ∈ C(RN ,R) and infx∈RN V (x) = V0 > −1;

(V′′
2) There exists an open bounded set Ω ⊂ RN such that

−1 < V0 = inf
x∈Ω

V (x) < min
∂Ω

V and M = {x ∈ Ω: V (x) = V0} ̸= ∅.

They used the penalization method in order to prove the existence of positive
solutions of (1.4) as well as the concentration behavior under (V′′

1) and (V′′
2). We

also mention the works of Alves-Ambrosio [1], Alves-Ji [4, 5], d’Avenia-Montefusco-
Squassina [17], Ji-Szulkin [28], Tanaka-Zhang [44] and the references therein.

Motivated by the above works, in this paper we consider the existence and con-
centration behavior of solutions for the following logarithmic fractional Schrödinger-
Poisson system {

ε2s (−∆)
s
u+ V (x)u− ϕu = u log u2 in R3,

ε2t (−∆)
t
ϕ = u2 in R3,

(1.5)

where ε > 0 is a small parameter, s, t ∈ (0, 1) are such that 4s + 2t > 3, and V
satisfies the local conditions

(V1) V ∈ C(R3,R) and infx∈R3 V (x) = V0 > −1;
(V2) There exists an open bounded set Ω ⊂ R3 such that

−1 < V0 = inf
x∈Ω

V (x) < min
∂Ω

V and M = {x ∈ Ω: V (x) = V0} ̸= ∅.

The main result in our paper reads as follows.
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Theorem 1.1. Suppose that V satisfies (V1) and (V2). Then, there exists ε0 > 0
such that, for each ε ∈ (0, ε0), the system (1.5) has a positive solution u ∈ Hs(R3)
satisfying u2 log u2 ∈ L1(R3). Moreover, if uε is a solution of (1.5) and yε ∈ R3

denotes a global maximum point of uε, then

lim
ε→0+

V (yε) = V0.

Our approach is mainly based on variational methods. Nevertheless, due to the
combination of the nonlinear and nonlocal operator (−∆)ν along with the logarith-
mic nonlinearity, several estimates will be more delicate and completely different
from the references mentioned above. Some important points are highlighted below:

(i) Due to the logarithmic term, the associated energy functional of system
(1.5) may take the value +∞, since there is a function u ∈ Hs(R3) such
that

∫
R3 u

2 log u2 dx = −∞. Thus, the energy functional is not well defined

in Hs(R3) and the classical variational methods cannot be applied here. In
order to find solutions of system (1.5), we will make a technical decomposi-
tion to obtain a functional which is a sum of a lower semicontinuous convex
functional and of a C1-functional. Then, a new version of the Mountain
Pass Theorem can be applied to get a (PS) sequence.

(ii) Because of the appearance of two fractional Laplace operators in (1.5), our
analysis becomes more complex and interesting as well as new arguments
have to be taken into account to solve our problem.

(iii) Since V only satisfies the local conditions in (V1) and (V2), we have no
information on the behavior of the potential V at infinity. So it is com-
plicated to prove the (PS) condition. Due to the presence of the nonlocal
term, we modify the nonlinearity in a special penalization way which is
different from Alves-Ji [3]. Then we can prove that the modified functional
satisfies the (PS) condition. Furthermore, we show that the solution of the
modified problem is in fact a solution of the original problem (1.5) provided
ε > 0 is sufficiently small.

The paper is organized as follows. In Section 2, we recall some lemmas which
will be needed in the paper. Then, in Section 3, we study the auxiliary problem
which is a key point in our approach. Finally, Section 4 is devoted to the proof of
Theorem 1.1.

2. Preliminaries

In this section we present the main tools and notions that will occur in Sections 3
and 4. For A ⊂ R3, we denote by |u|Lq(A) the L

q(A)-norm of a function u : R3 → R
and by |u|q its Lq(R3)-norm. Let us define Ds,2(R3) as the completion of C∞

c (R3)
with respect to

[u]2 =

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
dx dy.

Then, we consider the fractional Sobolev space

Hs(R3) =
{
u ∈ L2

(
R3
)
: [u] <∞

}
endowed with the norm

∥u∥2 = [u]2 + |u|22.
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Now, we recall the following main embeddings for the fractional Sobolev spaces,
see Di Nezza-Palatucci-Valdinoci [21].

Lemma 2.1. Let s ∈ (0, 1). Then Hs(R3) is continuously embedded in Lp(R3) for
any p ∈ [2, 2∗s] and compactly embedded in Lp

loc(R3) for any p ∈ [1, 2∗s).

In addition, we define by S∗ the best constant of the Sobolev embedding Hs(R3)
into L2∗s (R3). We also recall a version of the well-known concentration-compactness
principle, see Felmer-Quaas-Tan [22].

Lemma 2.2. If {un}n∈N is a bounded sequence in Hs(R3) and if

lim
n→∞

sup
y∈R3

∫
BR(y)

|un|2 dx = 0,

where R > 0, then un → 0 in Lr(R3) for all r ∈ (2, 2∗s).

By Lemma 2.1, we have

Hs(R3) ⊂ L
12

3+2t (R3). (2.1)

For any fixed u ∈ Hs(R3), let Lu : D
t,2(R3) → R be the functional given by

Lu(v) =

∫
R3

u2v dx,

which is continuous in view of Hölder’s inequality and (2.1). Indeed, it holds

|Lu(v)| ≤
(∫

R3

|u|
12

3+2t dx

) 3+2t
6
(∫

R3

|v|2
∗
t dx

) 1
2∗t

≤ C∥u∥2∥v∥Dt,2 ,

where

∥v∥2Dt,2 =

∫∫
R6

|v(x)− v(y)|2

|x− y|3+2t
dx dy.

Then, by the Lax-Milgram Theorem, there is a unique ϕtu ∈ Dt,2(R3) such that
⟨ϕtu, v⟩ for each v ∈ Dt,2(R3), where ⟨·, ·⟩ is the inner product on Dt,2(R3). Thus,
we obtain the t-Riesz formula

ϕtu(x) = ct

∫
R3

u2(y)

|x− y|3−2t
dy, where ct = π− 3

2 2−2tΓ(3− 2t)

Γ(t)
,

is the only weak solution of the problem

(−∆)tϕtu = u2 in R3.

In order to study the system (1.5), we use the change of variable x→ εx and we
will look for the solutions of the problem{

(−∆)
s
u+ V (εx)u− ϕu = u log u2 in R3,

(−∆)
t
ϕ = u2 in R3.

(2.2)

Substituting ϕt = ϕtu into system (2.2), we can rewrite (2.2) as a single equation

(−∆)
s
u+ V (εx)u− ϕtuu = u log u2 in R3. (2.3)

Next, we can state the following useful properties whose proofs can be found in
Liu-Zhang [30] and Teng [45].

Lemma 2.3. For all u ∈ Hs(R3), then the following properties are valid:
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(1) ∥ϕtu∥Dt,2 ≤ C|u|2 12
3+2t

≤ C∥u∥2 and
∫
R3 ϕ

t
uu

2 dx ≤ Ct|u|4 12
3+2t

. Moreover

ϕtu : H
s(R3) → Dt,2(R3) is continuous and maps bounded sets into bounded

sets;
(2) ϕtu ≥ 0 in R3;
(3) if y ∈ R3 and ū(x) = u(x+ y), then ϕtū(x) = ϕtu(x+ y) and

∫
R3 ϕ

t
ūū

2 dx =∫
R3 ϕ

t
uu

2 dx;

(4) ϕtru = r2ϕtu for all r ∈ R;
(5) if un ⇀ u in Hs(R3), then ϕtun

⇀ ϕtu in Dt,2(R3);

(6) if un ⇀ u in Hs(R3), then
∫
R3 ϕ

t
un
u2 dx =

∫
R3 ϕ

t
(un−u) (un − u)

2
dx +∫

R3 ϕ
t
uu

2 dx+ on(1);

(7) if un → u in Hs(R3), then ϕtun
→ ϕtu in Dt,2(R3) and

∫
R3 ϕ

t
un
u2 dx →∫

R3 ϕ
t
uu

2 dx.

We define N : Hs(R3) → R by setting

N(u) =

∫
R3

ϕtuu
2 dx. (2.4)

Similar to the Brézis-Lieb lemma, N possesses the following properties whose proofs
can be found in Teng [45].

Lemma 2.4. Let N be defined by (2.4). If un ⇀ u in Hs(R3) and un → u a.e. in
R3, then

N(un − u) = N(un)−N(u).

Note that a weak solution of (2.3) in Hs(R3) is a critical point of the associated
energy functional

Iε(u) :=
1

2
∥u∥2ε −

1

4

∫
R3

ϕtuu
2 dx− 1

2

∫
R3

u2 log u2 dx,

defined for all u ∈ Hε, where

Hε :=

{
u ∈ Hs(R3) :

∫
R3

V (εx)u2 dx <∞
}

is endowed with the norm

∥u∥2ε := [u]2 +

∫
R3

(V (εx) + 1)u2 dx.

Obviously, Hε is a Hilbert space with inner product

(u, v)ε =

∫∫
R6

(u(x)− u(y))(v(x)− v(y))

|x− y|3+2s
dx dy +

∫
R3

(V (εx) + 1)uv dx.

Definition 2.5. A solution of problem (2.3) is a function u ∈ Hs(R3) such that
u2 log u2 ∈ L1(R3) and∫∫

R6

(u(x)− u(y))(v(x)− v(y))

|x− y|3+2s
dx dy +

∫
R3

V (εx)uv dx

−
∫
R3

ϕtuuv dx =

∫
R3

uv log u2 dx, for all u, v ∈ C∞
0 (R3).



LOGARITHMIC FRACTIONAL SCHRÖDINGER-POISSON SYSTEM 7

Due to the lack of smoothness of Iε, we shall use the approach explored in Ji-
Szulkin [28] and Squassina-Szulkin [41]. Let us decompose Iε into a sum of a C1

functional plus a convex lower semicontinuous functional, respectively. For δ > 0,
we define the functions

F1(ξ) =


0, if ξ = 0

− 1
2ξ

2 log ξ2 if 0 < |ξ| < δ

− 1
2ξ

2
(
log δ2 + 3

)
+ 2δ|ξ| − 1

2δ
2, if |ξ| ≥ δ

and

F2(ξ) =

{
0, if |ξ| < δ
1
2ξ

2 log
(
ξ2/δ2

)
+ 2δ|ξ| − 3

2ξ
2 − 1

2δ
2, if |ξ| ≥ δ.

Then,

F2(ξ)− F1(ξ) =
1

2
ξ2 log ξ2 for all ξ ∈ R,

and the functional Iε : Hε → (−∞,+∞] may be rewritten as

Iε(u) = Φε(u) + Ψ(u) for u ∈ Hε, (2.5)

where

Φε(u) =
1

2
∥u∥2ε −

1

4

∫
R3

ϕtu|u|2 dx−
∫
R3

F2(u) dx,

and

Ψ(u) =

∫
R3

F1(u) dx.

As proved in Ji-Szulkin [28] and Squassina-Szulkin [41], F1, F2 ∈ C1(R,R). If
δ > 0 is small enough, F1 is convex, even,

F1(ξ) ≥ 0 and 0 ≤ 1

2
F ′
1(ξ)ξ ≤ F1(ξ) ≤ F ′

1(ξ)ξ for all ξ ∈ R. (2.6)

For each fixed p ∈ (2, 2∗s), there exists a constant C > 0 such that

|F ′
2(ξ)| ≤ C|ξ|p−1 for all ξ ∈ R. (2.7)

Note that Φε ∈ C1(Hs(R3),R) and Ψ is convex and lower semicontinuous in
Hs(R3), but Ψ is not a C1 functional due to the unboundedness of R3. Then,
we will seek a critical point in the sense of a sub-differential. Next, we recall some
definitions that can be found in Szulkin [43].

Definition 2.6. Let E be a Banach space, E′ be the dual space of E and ⟨·, ·⟩ be the
duality paring between E′ and E. Let J : E → R be a functional of the form J(u) =
Φ(u) + Ψ(u), where Φ ∈ C1(E,R) and Ψ is convex and lower semicontinuous.

(i) The sub-differential ∂J(u) of the functional J at a point u ∈ E is the set

{w ∈ E′ : ⟨Φ′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ ⟨w, v − u⟩ for all v ∈ E} ;
(ii) A critical point of J is a point u ∈ E such that J(u) < +∞ and 0 ∈ ∂J(u),

i.e.

⟨Φ′(u), v − u⟩+Ψ(v)−Ψ(u) ≥ 0 for all v ∈ E; (2.8)
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(iii) A Palais-Smale sequence at level d ( (PS)d sequence for short) for J is a
sequence {un}n∈N ⊂ E such that J(un) → d and there exists a numerical
sequence τn → 0+ with

⟨Φ′(un), v − un⟩+Ψ(v)−Ψ(un) ≥ −τn ∥v − un∥ for all v ∈ E;

(iv) The functional J satisfies the Palais-Smale condition at level d (( (PS)d
condition for short)) if all (PS)d sequences have a convergent subsequence;

(v) The effective domain of J is the set D(J) = {u ∈ E : J(u) < +∞}.

In what follows, for each u ∈ D(Iε), we set the functional I ′
ε(u) : Hε,c → R given

by

⟨I ′
ε(u), z⟩ = ⟨Φ′

ε(u), z⟩ −
∫
F ′
1(u)z dx for all z ∈ Hε,c,

where

Hε,c = {u ∈ Hε : u has compact support}.
Further, we define

∥I ′
ε(u)∥ = sup {⟨I ′(u), z⟩ : z ∈ Hε,c and ∥z∥ε ≤ 1} .

If ∥I ′
ε(u)∥ is finite, then I ′

ε(u) may be extended to a bounded operator in Hε, and
so, it can be seen as an element of H′

ε.

Lemma 2.7. Let Iε satisfies (2.5).

(i) If u ∈ D(Iε) is a critical point of Iε. Then, it holds

⟨Φ′
ε(u), v − u⟩+Ψ(v)−Ψ(u) ≥ 0 for all v ∈ Hε,

or equivalently

(u, v − u)ε +

∫
R3

F1(v) dx−
∫
R3

F1(u) dx ≥
∫
R3

F ′
2(u)(v − u) dx

for all v ∈ Hε;
(ii) For each u ∈ D(Iε) such that ∥I ′

ε(u)∥ < +∞, we have ∂Iε(u) ̸= ∅, that is,
there exists w ∈ H′

ε, which is denoted by w = I ′
ε(u), such that

⟨Φ′
ε(u), v − u⟩+

∫
R3

F1(v) dx−
∫
R3

F1(u) dx ≥ ⟨w, v − u⟩

for all v ∈ Hε;
(iii) If a function u ∈ D(Iε) is a critical point of Iε, then u is a solution of

(2.3);
(iv) If {un}n∈N ⊂ Hε is a Palais-Smale sequence, then

⟨I ′
ε (un) , z⟩ = on(1)∥z∥ε for all z ∈ Hε,c;

(v) If Ω is a bounded domain with regular boundary, then Ψ (and hence Iε) is
of class C1 in Hs(Ω). More precisely, the functional

Ψ(u) =

∫
Ω

F1(u) dx for all u ∈ Hs(Ω)

belongs to C1 (Hs(Ω),R).
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Proof. (i) This follows from (2.8).
(ii) This can be obtained arguing as in the proof of Squassina-Szulkin [42] and

recalling that C∞
c (R3) is dense in Hε.

(iii) and (iv) This can be shown by following the same lines of the proofs of
Ji-Szulkin [28].

(v) Since |F ′
1(t)| ≤ C(1 + |t|q−1) with q ∈ (2, 2∗s), it is enough to proceed as in

the proof of Willem [46]. □

As a consequence of the above properties, we have the following result.

Lemma 2.8. If u ∈ D(Iε) and ∥I ′
ε(u)∥ < +∞, then F ′

1(u)u ∈ L1(R3).

Proof. Let ϖ ∈ C∞
c (R3) be such that 0 ≤ ϖ ≤ 1 in R3, ϖ(x) = 1 for |x| ≤ 1

and ϖ(x) = 0 for |x| ≥ 2. For R > 0 and u ∈ D(Iε), let ϖR(x) = ϖ( x
R ) and

uR(x) = ϖR(x)u(x). Let us prove that

lim
R→∞

∥uR − u∥ε = 0. (2.9)

Clearly, uR → u in L2(R3). On the other hand,

[uR − u]2 ≤ 2

[∫∫
R6

|ϖR(x)−ϖR(y)|2

|x− y|3+2s
|u(x)|2 dx dy

+

∫∫
R6

|u(x)− u(y)|2

|x− y|3+2s
|ϖR(x)− 1|2 dx dy

]
= 2 [AR + BR] .

We have

AR =

∫∫
R6

|ϖR(x)−ϖR(y)|2

|x− y|3+2s
|u(x)|2 dx dy

=

∫
R3

|u(x)|2
(∫

|x−y|>R

|ϖR(x)−ϖR(y)|2

|x− y|3+2s
dx

+

∫
|x−y|≤R

|ϖR(x)−ϖR(y)|2

|x− y|3+2s
dx

)
dy

≤
∫
R3

|u(x)|2
(∫

|x−y|>R

4∥ϖ∥2L∞(R3)

|x− y|3+2s
dx

+R−2

∫
|x−y|≤R

∥∇ϖ∥2L∞(R3)

|x− y|3+2s
dx

)
dy

≤ C

∫
R3

|u(x)|2 dy

(∫ ∞

R

1

r2s+1
dr +R−2

∫ R

0

1

r2s−1
dr

)

≤ C

R2s
.

Thus, 0 ≤ AR → 0. Moreover, BR → 0 by the dominated convergence theorem.
Then, (2.9) holds.

From Lemma 2.7 (ii),

⟨Φ′
ε(u), uR⟩+

∫
R3

F ′
1(u)uR dx = ⟨w, uR⟩ for all w ∈ H′

ε. (2.10)
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Then, combining (2.9), (2.10) with Lemma 2.7 (v), we can see that
∫
R3 F

′
1(u)uR dx ≤

C for large R > 0. From uR → u a.e. in R3 as R → ∞ and Fatou’s lemma, we
derive that∫

R3

F ′
1(u)u dx ≤ lim inf

R→∞

∫
R3

F ′
1(u)uR dx ≤ lim inf

R→∞

∫
R3

F ′
1(u)uϖR dx ≤ C.

This finishes the proof. □

An immediate consequence of the last lemma are the following results.

Corollary 2.9. For each u ∈ D(Iε) \ {0} with ∥I ′
ε(u)∥ < +∞, we have that

I ′
ε(u)u = [u]2 +

∫
R3

V (εx)u2 dx−
∫
R3

ϕtuu
2 dx−

∫
R3

u2 log u2 dx

and

Iε(u)−
1

2
I ′
ε(u)u =

1

2

∫
R3

u2 dx+
1

4

∫
R3

ϕtuu
2 dx.

Corollary 2.10. If {un}n∈N ⊂ Hε is a (PS) sequence for Iε, then I ′
ε(un)un =

on(1)∥un∥ε. If {un}n∈N is bounded, we have

Iε (un) = Iε (un)−
1

2
I ′
ε (un)un + on(1)∥un∥ε

=
1

2

∫
R3

u2n dx+
1

4

∫
R3

ϕtun
u2n dx+ on(1)∥un∥ε

for all n ∈ N.

Corollary 2.11. If u ∈ Hε is a critical point of Iε and v ∈ Hε verifies F ′
1(u)v ∈

L1(R3), then I ′
ε(u)v = 0.

Finally, we give a version of the Mountain Pass Theorem without supposing the
(PS) condition for the functional I(u) = Φ(u) + Ψ(u), where Φ ∈ C1 and Ψ is
convex and lower semicontinuous. The theorem was first introduced by Alves-de
Morais Filho [2].

Proposition 2.12. Let E be a Banach space and I : E → (−∞,+∞] be a func-
tional satisfying

(i) I(u) = I1(u)+I2(u) with I1 ∈ C1(E,R), and I2 : E → (−∞,+∞] is convex,
lower semicontinuous and I2(u) ̸= +∞;

(ii) I(0) = 0 and I|∂Br0 (0)
≥ b0 for some r0, b0 > 0;

(iii) I(e) ≤ 0 for some e ̸∈ B̄r0(0).

Then for given τ > 0, there exists uτ ∈ E such that

⟨I ′1 (uτ ) , w − uτ ⟩+ I2(w)− I2 (uτ ) ≥ −3τ ∥w − uτ∥ for all w ∈ E,

and

I (uτ ) ∈ [c− τ, c+ τ ],

where

c := inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)),

and

Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0}.
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Corollary 2.13. Under the conditions of Proposition 2.12, there exists a (PS)
sequence {un}n∈N ⊂ E for I, i.e., for any w ∈ E,

I(un) → c and ⟨I ′1(un), w − un⟩+ I2(w)− I2(un) ≥ −σn ∥w − un∥ , (2.11)

with σn → 0+.

3. An auxiliary problem

In order to prove our main theorem, we will modify problem (2.3) and then
consider the existence of solutions to the auxiliary problem. For our problem,
since the logarithmic nonlinearity fulfills t log t2 + t ̸= o(t) as t → 0 and due to
the occurrence of the nonlocal term ϕtu, we cannot apply directly the penalization
argument employed in Del Pino-Felmer [20]. Here, we give a new scheme, which is
proposed in Peng [34].

For u ∈ Hε with u > 0, let

F̃ ′
2(u) = ϕtuu+ F ′

2(u).

Choose suitable θ ∈
(
0, 23

)
satisfying V0 + 1 ≥ 4θ and define

F̃ ′
∗(u) =

{
F̃ ′
2(u) if F̃ ′

2(u) ≤ θu,

θu if F̃ ′
2(u) > θu,

where V0 is given in (V1). We put

G′
2(x, u) = χΩ(x)F̃

′
2(u) + (1− χΩ(x)) F̃

′
∗(u),

where χΩ is the characteristic function of the set Ω.
For ε > 0, we define the auxiliary problem

(−∆)
s
+ (V (εx) + 1)u = G′

2

(
εx, u+

)
− F ′

1

(
u+
)

for x ∈ R3, (3.1)

where u+ = max {u(x), 0}.

Remark 3.1. Note that if uε is a positive solution of (3.1) satisfying F̃ ′
2(u) ≤ θu

for each x ∈ Ωc
ε, then it is also a positive solution of (2.3) and consequently, the

pair (uε, ϕuε
) ∈ Hs(R3) × Dt,2(R3) is a positive solution of system (1.5), where

Ωc
ε = {x ∈ R3 : εx ̸∈ Ω}.

It is clear that weak solutions of (3.1) are positive critical points of the following
energy functional

Jε(u) :=
1

2
∥u∥2ε +

∫
R3

F1(u
+) dx−

∫
R3

G2

(
εx, u+

)
dx,

in the sub-differential sense while G2 (εx, u
+) is given by

G2

(
εx, u+

)
=


1
4ϕ

t
u+ |u+|2 + F2 (u

+) , if x ∈ Ωε ∪
{
F̃ ′
2(u) ≤ θu

}
,

θ
2 |u

+|2 , if x ∈ Ωc
ε ∩
{
F̃ ′
2(u) > θu

}
.

Let H+
ε be the open subset of Hε given by

H+
ε =

{
u ∈ Hε :

∣∣supp (u+) ∩ Ωε

∣∣ > 0
}
.

The next lemma implies that Jε possesses the Mountain Pass geometry.

Lemma 3.2. Assume that (V1) and (V2) hold. Then we have the following:

(i) There exist α, ρ > 0 such that Jε(u) ≥ ρ with ∥u∥ε = α;
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(ii) There exists e ∈ Hε such that ∥u∥ε > α and Jε(e) < 0.

Proof. Noting that G2 (εx, u) =
θ
2u

2 for Ωc
ε∩
{
F̃ ′
2(u) > θu

}
, the fact that θ ≤ V0+1

4

and F1(u
+) ≥ 0, we have

Jε(u) ≥
1

4
∥u∥2ε −

1

4

∫
Ωε∪{F̃ ′

2≤θu}
ϕtu+

∣∣u+∣∣2 dx−
∫
Ωε∪{F̃ ′

2≤θu}
F2

(
u+
)
dx,

which follows from Lemma 2.3 and (2.7) for p ∈ (2, 2∗s) that

Jε(u) ≥
1

4
∥u∥2ε − C0∥u∥4ε − C1∥u∥pε .

The claim follows if we choose ρ and ∥u∥ε = α small enough.
On the other hand, fixing φ ∈ C∞

c (Ωε) \ {0}, by Lemma 2.3, we have

Jε(τφ) =
τ2

2
∥φ∥2ε −

τ4

4

∫
R3

ϕtφ|φ|2 dx− 1

2

∫
R3

τ2φ2 log(|τφ|2) dx

≤ τ2

2
∥φ∥2ε −

1

2

∫
R3

φ2 log(|τφ|2) dx

≤ τ2
(
Jε(φ) +

1

4

∫
R3

ϕtφ|φ|2 dx− log(τ)

∫
Ωε

φ2 dx

)
.

As τ → +∞, then

Jε(τφ) → −∞,

and the proof of the lemma is now complete. □

By Proposition 2.12 and Corollary 2.13, there exists a (PS) sequence {un}n∈N ⊂
Hε of Jε at the level cε > 0, where

cε = inf
γ∈Γε

max
t∈[0,1]

Jε(γ(t)),

and Γε :=
{
γ ∈ C1([0, 1],Hε) : γ(0) = 0,Jε(γ(1)) < 0

}
.

Now, we will prove some results that will be useful in the proof of Theorem 1.1.

Lemma 3.3. For any ε > 0, all (PS) sequences of Jε are bounded in Hε.

Proof. We define

Λ1
ε =

{
F̃ ′
2(u) ≤ θu

}
, Λ2

ε = Ωc
ε ∩
{
F̃ ′
2(u) > θu

}
and Λε = Λ1

ε ∪ Λ2
ε.

Then, it holds

R3 = Ωε ∪ Λ1
ε ∪ Λ2

ε = Ωε ∪ Λε,

and

Jε(un) = Jε|Ωε
(un) + Jε|Λε

(un).

Without any loss of generality we will assume that u+n ̸= 0, because otherwise, we
have the inequality

∥un∥ε ≤ 2M.

In the following, we analyze the two cases:



LOGARITHMIC FRACTIONAL SCHRÖDINGER-POISSON SYSTEM 13

Case I: For any x ∈ Ωε, inspired by Alves-Ji [5], we have that Jε|Ωε
= Iε|Ωε

∈
C1(Ωε,R). Then there is C > 0 such that∫

R3

u2n dx+
1

2

∫
R3

ϕtun
u2n dx = 2Iε|Ωε

(un)− I ′
ε|Ωε

(un)un

= 2cε + on(1) + on(1) ∥un∥ε
≤ C + on(1) ∥un∥ε .

Consequently,

∥un∥2ε ≤ C + on(1)∥un∥ε. (3.2)

Instead of the classical logarithmic Sobolev inequality of Lieb-Loss [29], we use
the fractional logarithmic Sobolev inequality recently established by Chatzakou-
Ruzhansky [13]. According to Theorem 1.1 in [13], for any a > 0 and u ∈ Hs(R3),
there holds∫

R3

u2 log

(
u2

|u|22

)
dx+

3

s
(1 + log a)|u|22 ≤ C(3, s, a)|(−∆)s/2u|22.

Noting that |(−∆)s/2u|22 = Cn,s[u]
2 and log(u2/|u|22) = log u2 − log |u|22, we can

rewrite this inequality as∫
R3

u2 log u2dx ≤ κ[u]2 + Cκ|u|22 + |u|22 log |u|22, (3.3)

where κ can be chosen arbitrarily small by adjusting the parameter a. Choosing
κ ∈ (0, 1), ξ ∈ (0, 1), and using the fact that |un|22 ≤ ∥un∥2ε along with (3.2), the
inequality (3.3) yields∫

Ωε

u2n log u
2
n dx ≤ κ[un]

2 + Cκ|un|22 + |un|22 log |un|22

≤ κ ∥un∥2Ωε
+ C1

(
1 + ∥un∥Ωε

)1+ξ
,

(3.4)

where

∥u∥2Ωε
=

∫∫
Ωε×Ωε

|u(x)− u(y)|2

|x− y|3+2s
dx dy +

∫
Ωε

(V (εx) + 1)u2 dx.

Then by (3.4), we have that

cε + on(1) = Iε|Ωε
(un)−

1

2
I ′
ε|Ωε

(un)un

≥ 1

4
∥un∥2Ωε

− 1

4

∫
Ωε

u2n log u
2
n dx

≥ 1− κ

4
∥un∥2Ωε

− C2 (1 + ∥un∥Ωε
)
1+ξ

,

which implies that the sequence {un}n∈N is bounded for any x ∈ Ωε since κ < 1
and 1 + ξ < 2.

Case II: For any x ∈ Λε. By the assumption, there exists M > 0 such that for
any n ∈ N,

M ≥ Jε|Λε (un)

=
1

2
∥un∥2Λε

+

∫
Λε

F1

(
u+n
)
dx−

∫
Λε

G2

(
εx, u+n

)
dx
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=
1

2
∥un∥2Λε

+

∫
Λε

F1

(
u+n
)
dx−

∫
Λ1

ε

(
1

4
ϕt
u+
n

∣∣u+n ∣∣2 dx+ F2

(
u+n
))

dx

− θ

2

∫
Λ2

ε

∣∣u+n ∣∣2 dx

≥ 1− θ

2
∥un∥2Λε

+

∫
Λε

F1

(
u+n
)
dx−

∫
Λε

F2

(
u+n
)
dx− 1

4

∫
Λ1

ε

ϕt
u+
n

∣∣u+n ∣∣2 dx

=
1− θ

2
∥un∥2Λε

− 1

2

∫
Λε

∣∣u+n ∣∣2 log ∣∣u+n ∣∣2 dx− 1

4

∫
Λ1

ε

ϕt
u+
n

∣∣u+n ∣∣2 dx,

where

∥u∥2Λε
=

∫∫
Λε×Λε

|u(x)− u(y)|2

|x− y|3+2s
dx dy +

∫
Λε

(V (εx) + 1)u2 dx.

Then, for any n ∈ N,

(1− θ)||un||2Λε
≤ 2M +

∫
Λε

∣∣u+n ∣∣2 log ∣∣u+n ∣∣2 dx+
1

2

∫
Λ1

ε

ϕt
u+
n

∣∣u+n ∣∣2 dx. (3.5)

Recalling that for any x ∈ Λ1
ε, there holds ϕtuu ≤ θu, and so∫
Λ1

ε

ϕtuu
2 dx ≤

∫
Λ1

ε

θu2 dx. (3.6)

Applying the fractional logarithmic Sobolev inequality (3.3) and the estimate (3.6)
to (3.5), we obtain

(1− θ)∥un∥2Λε
≤ 2M + κ[un]

2 + Cκ|un|22 + |un|22 log |un|22

+
θ

2

∫
Λ1

ε

|un|2 dx

≤ 2M + κ∥un∥2ε + C3 (1 + ∥un∥ε)1+ξ
+
θ

2
∥un∥2Λε

,

where we have used the fact that [un]
2 ≤ ∥un∥2ε and |un|22 ≤ ∥un∥2ε, along with

(3.6). Recalling that ∥un∥2ε = ∥un∥2Ωε
+ ∥un∥2Λε

and using the boundedness of
∥un∥Ωε

derived in Case I, we have

∥un∥2ε ≤ C4 + ∥un∥2Λε
.

Substituting this into the inequality above, we get(
1− 3

2
θ − ε

)
∥un∥2Λε

≤ C5 (1 + ∥un∥Λε)
1+ξ

.

Since θ ∈ (0, 23 ), we have 1−
3
2θ > 0. By choosing ε > 0 sufficiently small such that

1− 3
2θ − κ > 0, and noting that 1 + ξ < 2, we conclude that ∥un∥Λε

is bounded.
Therefore, combining the results from Case I and Case II, we have that the

sequence {un}n∈N is bounded in Hε. □

Lemma 3.4. Let {un}n∈N be a (PS) sequence for Jε. Then for any ζ > 0, there
exists r = r(ζ) > R > 0 such that

lim sup
n→∞

∫
R3\Br

(∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dy + (V (εx) + 1)u2n

)
dx < ζ.
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Proof. We consider r > R and a function ψ = ψr ∈ C∞
0 (R3) such that ψ ≡ 0 if

x ∈ Br(0), ψ ≡ 1 if x /∈ B2r(0) with 0 ≤ ψ(x) ≤ 1, and |∇ψ(x)| ≤ C
r , where C is a

constant independent of r, for all x ∈ RN . As {un}n∈N is bounded, the sequence
{ψun}n∈N is also bounded. This shows that I ′

ε(un)(ψun) = on(1), namely,∫∫
R6

|un(x)− un(y)|2

|x− y|3+2s
ψ(x) dx dy +

∫
R3

(V (εx) + 1)u2nψ(x) dx

=

∫
Ωε

F ′
2(u

+)unψ(x) dx+

∫
Ωc

ε

F̃ ′
∗(u

+)unψ(x) dx−
∫
R3

F ′
1(u

+)unψ(x) dx

−
∫∫

R6

(un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|3+2s
un(y) dx dy + on(1).

We take r > R such that Ωε ⊂ Br. Then, by (2.6) and the definitions of F̃ ′
∗, we

obtain∫∫
R6

|un(x)− un(y)|2

|x− y|3+2s
ψ(x) dx dy +

∫
R3

(V (εx) + 1)u2nψ(x) dx

≤ θ

∫
R3

u2nψ(x) dx−
∫∫

R6

(un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|3+2s
un(y) dx dy

+ on(1).

(3.7)

Now, we will prove that

lim
r→∞

lim sup
n→∞

∫∫
R6

(un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|3+2s
un(y) dx dy = 0. (3.8)

By Hölder’s inequality and the boundedness of {un}n∈N, we have∣∣∣∣∫∫
R6

(un(x)− un(y)) (ψ(x)− ψ(y))

|x− y|3+2s
un(y) dx dy

∣∣∣∣
≤

(∫∫
R6

|un(x)− un(y)|2

|x− y|3+2s
dx dy

) 1
2
(∫∫

R6

|ψ(x)− ψ(y)|2

|x− y|3+2s
|un(y)|2 dx dy

) 1
2

≤ C

(∫∫
R6

|ψ(x)− ψ(y)|2

|x− y|3+2s
|un(y)|2 dx dy

) 1
2

.

It is enough to prove

lim
r→∞

lim sup
n→∞

∫∫
R6

|ψ(x)− ψ(y)|2

|x− y|3+2s
|un(y)|2 dx dy = 0 (3.9)

in order to show that (3.8) is true. Note that R6 can be written as

R6 =
((
R3 \B2r

)
×
(
R3 \B2r

))
∪
((
R3 \B2r

)
×B2r

)
∪
(
B2r × R3

)
=: X1

r ∪ X2
r ∪ X3

r,
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so, ∫∫
R6

|ψ(x)− ψ(y)|2

|x− y|3+2s
|un(x)|2 dx dy

=

∫∫
X1

r

|ψ(x)− ψ(y)|2

|x− y|3+2s
|un(x)|2 dx dy

+

∫∫
X2

r

|ψ(x)− ψ(y)|2

|x− y|3+2s
|un(x)|2 dx dy

+

∫∫
X3

r

|ψ(x)− ψ(y)|2

|x− y|3+2s
|un(x)|2 dx dy.

(3.10)

Since ψ = 1 in R3 \B2r, we have∫∫
X1

r

|ψ(x)− ψ(y)|2 |un(x)|2

|x− y|3+2s
dx dy = 0. (3.11)

Let k > 4. Then

X2
r =

(
R3 \B2r

)
×B2r ⊂

((
R3 \Bkr

)
×B2r

)
∪ ((Bkr \B2r)×B2r) .

Let us observe that, if (x, y) ∈
(
R3 \Bkr

)
×B2r, then

|x− y| ≥ |x| − |y| ≥ |x| − 2r >
|x|
2
.
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Taking into account that 0 ≤ ψ ≤ 1, |∇ψ| ≤ C
r and using Hölder inequality, we

have ∫∫
X2

r

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dx dy

=

∫
R3\Bkr

dx

∫
B2r

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy

+

∫
Bkr\B2r

dx

∫
B2r

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy

≤ 25+2s

∫
R3\Bkr

dx

∫
B2r

|un(x)|2

|x|3+2s
dy

+
C

r2

∫
Bkr\B2r

dx

∫
B2r

|un(x)|2

|x− y|3+2(s−1)
dy

≤ Cr3
∫
R3\Bkr

|un(x)|2

|x|3+2s
dx+

C

r2
(kr)2(1−s)

∫
Bkr\B2r

|un(x)|2 dx

≤ Cr3

(∫
R3\Bkr

|un(x)|2
∗
s dx

) 2
2∗s
(∫

R3\Bkr

1

|x| 9
2s+3

dx

) 2s
3

+
Ck2(1−s)

r2s

∫
Bkr\B2r

|un(x)|2 dx

≤ C

k3

(∫
R3\Bkr

|un(x)|2
∗
s dx

) 2
2∗s

+
Ck2(1−s)

r2s

∫
Bkr\B2r

|un(x)|2 dx

≤ C

k3
+
Ck2(1−s)

r2s

∫
Bkr\B2r

|un(x)|2 dx.

(3.12)

Fixing δ ∈ (0, 1), and we have that∫∫
X3

r

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dx dy

≤
∫
B2r\Bδr

dx

∫
R3

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy

+

∫
Bδr

dx

∫
R3

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy.

(3.13)

Let us estimate (3.13). We have∫
B2r\Bδr

dx

∫
R3∩{y : |x−y|<r}

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy

≤ C

r2s

∫
B2r\Bδr

|un(x)|2 dx,

and ∫
B2r\Bδr

dx

∫
R3∩{y : |x−y|≥r}

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy
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≤ C

r2s

∫
B2r\Bδr

|un(x)|2 dx,

which shows that∫
B2r\Bδr

dx

∫
R3

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy ≤ C

r2s

∫
B2r\Bδr

|un(x)|2 dx. (3.14)

By the definition of ψ, δ ∈ (0, 1), and 0 ≤ ψ ≤ 1,∫
Bδr

dx

∫
R3

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy

=

∫
Bδr

dx

∫
R3\Br

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dy

≤ 4

∫
Bδr

dx

∫
R3\Br

|un(x)|2

|x− y|3+2s
dy

≤ C

∫
Bδr

|un|2 dx

∫ ∞

(1−δ)r

1

r1+2s
dr

=
C

[(1− δ)r]2s

∫
Bδr

|un|2 dx,

(3.15)

where we have used the fact that if (x, y) ∈ Bδr×
(
R3 \Br

)
, then |x−y| > (1−δ)r.

From (3.13), (3.14) and (3.15), one has∫∫
X3

r

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dx dy

≤ C

r2s

∫
B2r\Bδr

|un(x)|2 dx+
C

[(1− δ)r]2s

∫
Bδr

|un(x)|2 dx.

(3.16)

From (3.10), (3.11), (3.12) and (3.16), we obtain∫∫
R6

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dx dy

≤ C

k3
+
Ck2(1−s)

r2s

∫
Bkr\B2r

|un(x)|2 dx

+
C

r2s

∫
B2r\Bδr

|un(x)|2 dx+
C

[(1− δ)r]2s

∫
Bδr

|un(x)|2 dx.

(3.17)

Since {un}n∈N is bounded, by Lemma 2.1, we may assume that un → u in L2
loc

(
R3
)

for some u ∈ Hs(R3). Taking the limit as n → ∞ in (3.17) and applying Hölder’s
inequality, we have

lim sup
n→∞

∫∫
R6

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dx dy

≤ C

k3
+
Ck2(1−s)

r2s

∫
Bkr\B2r

|u(x)|2 dx

+
C

r2s

∫
B2r\Bδr

|u(x)|2 dx+
C

[(1− δ)r]2s

∫
Bδr

|u(x)|2 dx
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≤ C

k3
+ Ck2

(∫
Bkr\B2r

|u(x)|2
∗
s dx

) 2
2∗s

+ C

(∫
B2r\Bδr

|u(x)|2
∗
s dx

) 2
2∗s

+ C

(
δ

1− δ

)2s(∫
Bδr

|u(x)|2
∗
s dx

) 2
2∗s
.

Since u ∈ L2∗s (R3), k > 4 and δ ∈ (0, 1), we have

lim sup
r→∞

∫
Bkr\B2r

|u(x)|2
∗
s dx = lim sup

r→∞

∫
B2r\Bδr

|u(x)|2
∗
s dx = 0.

Let δ = 1
k . We get

lim sup
r→∞

lim sup
n→∞

∫∫
R6

|un(x)|2 |ψ(x)− ψ(y)|2

|x− y|3+2s
dx dy

≤ lim
k→∞

lim sup
r→∞

 C
k3

+ Ck2

(∫
Bkr\B2r

|u(x)|2
∗
s dx

) 2
2∗s

+C

∫
B2r\B 1

k
r

|u(x)|2
∗
s dx

 2
2∗s

+ C

(
1

k − 1

)2s
∫

B 1
k

r

|u(x)|2
∗
s dx

 2
2∗s


≤ lim

k→∞

C

k3
+ C

(
1

k − 1

)2s(∫
R3

|u(x)|2
∗
s dx

) 2
2∗s

= 0,

which shows that (3.9) holds. By (3.7), (3.8), the definition of ψ, the boundedness
of {un}n∈N and θ ≤ V0+1

4 , we infer that

lim
r→∞

lim sup
n→∞

∫
R3\Br

(∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dy + (V (εx) + 1)u2n

)
dx = 0,

which completes the proof. □

Lemma 3.5. The functional Jε verifies the (PS) condition in Hε at any level
cε ∈ R.

Proof. Let {un}n∈N be a (PS) sequence for Jε at the level cε. Since {un}n∈N is
bounded in Hε, see Lemma 3.3, up to a subsequence, we may assume that

un ⇀ u in Hε.

By Lemma 3.4, for each ζ > 0, there is r = r(ζ) > 0 such that

lim sup
n→∞

∫
R3\Br

(∫
R3

|un(x)− un(y)|2

|x− y|3+2s
dy + (V (εx) + 1)u2n

)
dx < ζ. (3.18)

By (3.18) and the fact that Hε ↪→ Lr
loc(R3) for all r ∈ [2, 2∗s), we can deduce that

un → u in Lr(R3) for all r ∈ [2, 2∗s). Furthermore, from the definition of G′
2, Lemma

2.3 and (2.7), one has∫
R3

G′
2(εx, u

+
n )ω dx→

∫
R3

G′
2(εx, u

+)ω dx for all ω ∈ C∞
0 (R3),
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R3

G′
2(εx, u

+
n )u

+
n dx→

∫
R3

G′
2(εx, u

+)u+ dx,

and ∫
R3

G2(εx, u
+
n ) dx→

∫
R3

G2(εx, u
+) dx.

Since J ′
ε(un)ω = on(1) for all ω ∈ C∞

c (R3), we infer that J ′
ε(u)ω = on(1) for all

ω ∈ C∞
c (R3), and thus Jε(u)u = 0, that is,

∥u∥2ε +
∫
R3

F ′
1(u

+)u+ dx =

∫
R3

G′
2(εx, u

+)u+ dx.

On the other hand, using the fact that Jε(un)un = on(1), namely

∥un∥2ε +
∫
R3

F ′
1(u

+
n )u

+
n dx =

∫
R3

G′
2(εx, u

+
n )u

+
n dx+ on(1),

we can deduce that

∥un∥2ε +
∫
R3

F ′
1(u

+
n )u

+
n dx = ∥u∥2ε +

∫
R3

F ′
1(u

+)u+ dx+ on(1).

Therefore, un → u in Hε and F ′
1(u

+
n )u

+
n → F ′

1(u
+)u+ in L1(R3). Applying the

Dominated Convergence Theorem and (2.6), it is easy to check that F1(u
+
n ) →

F1(u
+) in L1(R3). Consequently, 0 ∈ ∂Jε(u) and Jε(u) = cε. □

Lemma 3.6. The functional Jε has a positive critical point uε ∈ Hε such that
Jε(uε) = cε.

Proof. In view of Lemmas 3.2–3.5, there exists a critical point uε ∈ Hε of Jε such
that Jε(uε) = cε for each ε > 0. In particular, taking v = uε ± τω with τ > 0
and ω ∈ C∞

c (R3) in the definition of a critical point of Jε, we can prove that
J ′
ε(uε)ω = 0 for all ω ∈ C∞

c (R3) and by the density J ′
ε(uε)v = 0 for all v ∈ Hε.

Let us show that uε ≥ 0 in R3. Let u−ε := min{uε, 0}, since J ′
ε(uε)u

−
ε = 0 and

the definitions of F1 and G2, we derive that u−ε = 0. By performing a Moser
iteration argument (see Lemma 3.13 below) and Silvestre [40], we can prove that

uε ∈ Lp(R3) ∩ C0,α
loc (R3) for all p ∈ [2,∞). From the strong maximum principle in

Silvestre [40], we can conclude that uε > 0 in R3. □

Let us introduce

Nε = {u ∈ D(Jε) \ {0} : J ′
ε(u)u = 0} .

Lemma 3.7. For each u ∈ H+
ε , let hu : R+ → R be defined as hu(τ) = Jε(τu).

Then, there exists a unique τu > 0 such that

h′u(τ) > 0 for τ ∈ (0, τu) ,

h′u(τ) < 0 for τ ∈ (τu,∞) .

Proof. Arguing as in the proof of Lemma 3.2, we can see that hu(0) = 0, hu(τ) > 0
for τ > 0 small and hu(τ) < 0 for τ > 0 large. Hence, maxτ∈[0,∞) hu(τ) is achieved
at some τ = τu > 0 such that h′u (τu) = 0 and τuu ∈ Nε. Next, we prove the
uniqueness of τu. Suppose by contradiction that there exist τ2 > τ1 > 0 such that
h′u (τ1) = h′u (τ2) = 0. Thus, for i = 1, 2, we have

τi∥u∥2ε −
∫
Ωε

F̃ ′
2

(
τiu

+
)
u+ dx−

∫
Ωc

ε

F̃ ′
∗
(
τiu

+
)
u+ dx+

∫
RN

F ′
1

(
τiu

+
)
u+ dx = 0,
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from which we get

∥u∥2ε =

∫
Ωε

F̃ ′
2 (τiu

+)u+

τi
dx+

∫
Ωc

ε

F̃ ′
∗ (τiu

+)u+

τi
dx−

∫
RN

F ′
1 (τiu

+)u+

τi
dx.

Hence, ∫
Ωε

(
F̃ ′
2 (τ2u

+)u+

τ2
− F̃ ′

2 (τ1u
+)u+

τ1

)
dx

+

∫
Ωc

ε

(
F̃ ′
∗ (τ2u

+)u+

τ2
− F̃ ′

∗ (τ1u
+)u+

τ1

)
dx

=

∫
RN

(
F ′
1 (τ2u

+)u+

τ2
− F ′

1 (τ1u
+)u+

τ1

)
dx.

Since u ∈ H+
ε , the left-hand side of the above identity is positive. Concerning the

right-hand side, one has∫
RN

(
F ′
1 (τ2u

+)u+

τ2
− F ′

1 (τ1u
+)u+

τ1

)
dx

=

∫
{
u+< δ

τ2

}
(
F ′
1 (τ2u

+)u+

τ2
− F ′

1 (τ1u
+)u+

τ1

)
dx

+

∫
{

δ
τ2

<u+< δ
τ1

}
(
F ′
1 (τ2u

+)u+

τ2
− F ′

1 (τ1u
+)u+

τ1

)
dx

+

∫
{
u+> δ

τ1

}
(
F ′
1 (τ2u

+)u+

τ2
− F ′

1 (τ1u
+)u+

τ1

)
dx

=

∫
{
u+< δ

τ2

} (u+)2 log(τ1
τ2

)2

dx

+

∫
{

δ
τ2

<u+< δ
τ1

}
((
u+
)2

log
τ21 (u+)

2

δ2
+ 2u+

(
δ

τ2
−
(
u+
)))

dx

+

∫
{
u+> δ

τ1

}
(

1

τ2
− 1

τ1

)
2δu+ dx.

As the right-hand side of the above identity is negative, we get a contradiction and
the proof of the lemma is finished. □

Remark 3.8. In view of Lemma 3.7, for any u ∈ H+
ε , there exists a unique τu > 0

such that τuu ∈ Nε. On the other hand, if u ∈ Nε, then u ∈ H+
ε . Otherwise,

|supp (u+) ∩ Ωε| = 0 and

[u]2 +

∫
RN

(V0 + 1)u2 dx ≤ ∥u∥2ε =

∫
Ωc

ε

F̃ ′
∗
(
u+
)
u+ dx−

∫
RN

F ′
1

(
u+
)
u+ dx

≤ θ

∫
RN

u2 dx

which implies [u]2+
∫
RN (V0 + 1− θ)u2 dx ≤ 0 and this gives a contradiction because

V0 + 1− θ ≥ 3θ > 0 and u ̸≡ 0.
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Next, we introduce the following system which is called the limit case of (1.5),
that is, {

ε2s (−∆)
s
u+ V0u− ϕu = u log u2 in R3,

ε2t (−∆)
t
ϕ = u2 in R3.

(3.19)

Let us consider the energy functional I0 : Hs
(
RN
)
→ (−∞,∞] given by

I0(u) =
1

2
∥u∥2YV0

− 1

4

∫
R3

ϕtuu
2 dx− 1

2

∫
R3

u2 log u2 dx

=
1

2
∥u∥2YV0

− 1

4

∫
R3

ϕtuu
2 dx−

∫
RN

F2(u) dx+

∫
RN

F1(u) dx,

where Yµ = Hs
(
RN
)
, with µ > −1, is endowed with the norm

∥u∥2Yµ
= [u]2 + (µ+ 1)|u|22.

Next, we prove the existence of a ground state for system (3.19).

Lemma 3.9. The system (3.19) has a positive ground state solution u0 which fulfills

I0(u0) = c0 = inf
u∈N0

I0(u) = inf
u∈D(I0)\{0}

max
τ≥0

I0(τu),

where

N0 =

{
u ∈ D (I0) \ {0} : I(u) =

1

2
|u|22 +

1

4

∫
R3

ϕtu|u|2 dx
}
,

and

D (I0) = {u ∈ YV0
: I0(u) <∞} .

Proof. We use some ideas found in Squassina-Szulkin [41, 42]. Define

Φ0(u) =
1

2
∥u∥2YV0

− 1

4

∫
R3

ϕtu|u|2 dx−
∫
R3

F2(u) dx,

and note that

Ψ(u) =

∫
R3

F1(u) dx,

then,

I0(u) = Φ0(u) + Ψ(u).

Let u ∈ D (I0) \ {0}.
Step 1: We claim that the map τ 7→ I0(τu) admits a unique maximum point

on (0,∞). Indeed, we consider the map ψu : (0,∞) → R given by

ψu(τ) = I0(τu) =
τ2

2
∥u∥2YV0

− τ4

4

∫
R3

ϕtuu
2 dx− τ2

2

∫
R3

u2 log (τu)2 dx

for τ > 0. It is clear that ψu(τ) > 0 for τ > 0 small and ψu(τ) < 0 for τ > 0 large.
Moreover, there exists a unique τ∗ > 0 such that ψ′

u(τ∗) = 0. In fact, for given
u ∈ YV0

, one can observe that

ψu(τ) = C1τ
2 − C2τ

4 − C3τ
2 log τ2 and ψ′

u(τ) = C4τ − C5τ
3 − C6τ log τ

2.

We set

h(τ) = C4 − C5τ
2 − C6 log τ

2,
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then ψ′
u(τ) = τh(τ). Moreover, it is easy to see that h is a decreasing function

in τ and h possesses the unique zero point τ∗. To be more precise, h(τ) > 0 for
τ ∈ (0, τ∗) and h(τ) < 0 for τ ∈ (τ∗,+∞). Hence, one can conclude that there
exists a unique point τ∗ > 0 such that ψ′

u(τ) > 0 for τ ∈ (0, τ∗) and ψ
′
u(τ) < 0 for

τ ∈ (τ∗,+∞). This shows the claim.
Step 2: Since ψ′

u(τ) = I ′
0(τu)u, the ray {τu : τ > 0} intersects the Nehari

manifold N0 at exactly one point. Moreover, there is τ0 > 0 such that, for all
u ∈ D (I0) ∩ S1, τ 7→ Φ0(τu) is increasing in (0, τ0), where S1 is the unit sphere in
YV0

. Since τ 7→ Ψ(τu) is increasing for all τ > 0 (by convexity), N0 is bounded
away from the origin. Define

Γ0 = {γ ∈ C ([0, 1], YV0) : γ(0) = 0, I0(γ(1)) < 0} ,
and

c̃ = inf
γ∈Γ0

sup
t∈[0,1]

I0(γ(t)).

Since Ψ ≥ 0 and using (2.7), it is easy to verify that there exist α, ρ > 0 such that
I0(u) ≥ ρ for all u ∈ YV0

such that ∥u∥YV0
= α. In particular, c̃ ≥ ρ > 0 (and c̃ is

the mountain pass level). Clearly, c̃ ≤ c0. Suppose by contradiction that there is
ε0 ∈

(
0, c̃2

)
such that there are no (PS) sequences in

(I0)c̃+2ε0
c̃−2ε0

= {u ∈ YV0
: c̃− 2ε0 ≤ I0(u) ≤ c̃+ 2ε0} .

Arguing as in the proof of Ji-Szulkin [28], we achieve a contradiction. Since ε0 may
be chosen arbitrarily small, we can find a sequence {un}n∈N such that I0 (un) → c̃
and I ′

0 (un) → 0.
Step 3: We show that {un}n∈N is bounded in YV0

. Assume that, for some d ∈ R,
it holds I0 (un) ≤ d for all n ∈ N. Then∫

R3

u2n dx+
1

2

∫
R3

ϕtun
u2n dx = 2I0(un)− I ′

0(un)un ≤ 2d+ on(1) ∥un∥YV0
.

Now, arguing as in the proof of Lemma 3.3 and using inequality (3.4), we see that

d+ on(1) = I0(un)−
1

4
I ′
0(un)un

≥ 1

4
∥un∥2YV0

− 1

4

∫
R3

u2n log u
2
n dx

≥ C7

(
∥un∥2YV0

− (1 + ∥un∥YV0
)1+ξ

)
,

which shows that the sequence {un}n∈N is bounded in YV0
.

Step 4: We prove that there exists a critical point ũ ̸= 0 of I0 such that
I0(ũ) ≤ c̃. This fact implies that u0 ∈ N0 and that I0 (u0) = c0 = c̃. Since
{un}n∈N is bounded in YV0 , we may assume that un ⇀ u in YV0 , un → u in
Lp
loc

(
R3
)
for all p ∈ [1, 2∗s) and un → u a.e. in R3. Since Ψ is lower semicontinuous

and convex, it is also weakly lower semicontinuous. So Ψ(u) < ∞ and u ∈ D (I0).
It is easy to check that

0 = lim
n→∞

I ′
0(un)v = I ′

0(u)v,

for all v ∈ C∞
c (R3). Moreover, by Fatou’s lemma

c̃ = lim inf
n→∞

[
I0 (un)−

1

2
I ′
0(un)un

]
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= lim inf
n→∞

[
1

2

∫
R3

u2n dx+
1

4

∫
R3

ϕtun
u2n dx

]
≥ 1

2

∫
R3

u2 dx+
1

4

∫
R3

ϕtuu
2 dx

= I0(u)−
1

2
I ′
0(u)u

= I0(u),
which yields I0(u) ≤ c̃. Now, if u ̸≡ 0, we are done. Suppose u ≡ 0. If |un|p → 0,
using Lemma 2.3, (2.6) and (2.7), then

on(1) = I ′
0 (un)un

= ∥un∥2YV0
−
∫
R3

ϕtun
u2n dx−

∫
R3

F ′
2 (un)un dx+

∫
R3

F ′
1 (un)un dx

≥ ∥un∥2YV0
− C8∥un∥4YV0

− C9

∫
R3

|un|p dx

= ∥un∥2YV0
− C8∥un∥4YV0

+ on(1),

which yields ∥un∥YV0
→ 0 or ∥un∥YV0

must be larger than some positive constants.

If ∥un∥YV0
must be larger than some positive constants, it contradicts the assump-

tion. So, ∥un∥YV0
→ 0. Taking w = 0 in (2.11), we get Φ′

0 (un) (−un) − Ψ(un) ≥
−σn ∥un∥YV0

, with σn → 0, and thus Ψ (un) → 0. Therefore, I0 (un) → 0 which

contradicts I0 (un) → c̃ > 0. Thus, |un|p ↛ 0 and using Lemma 2.2, we can find
(yn) ⊂ R3 and δ > 0 such that ∫

B1(yn)

|un|p dx ≥ δ.

Let ũn(x) = un (x+ yn). Clearly, I0 (ũn) → c̃ and I ′
0 (ũn) → 0. Moreover,∫

B1

|ũn|p dx =

∫
B1(yn)

|un|p dx ≥ δ,

and thus, after passing to a subsequence if necessary, ũn ⇀ ũ ̸= 0 in YV0 . Arguing
as before, we can see that ũ is a nontrivial critical point of I0 such that I0(ũ) ≤ c̃.
Hence, we have proved that there exists u0 ∈ N0 such that I0(u0) = c0.

Step 5: Finally, we show that u0 > 0 in R3. Let τu0
> 0 be such that

log τ2u0
=

[|u0|]2 − [u0]
2∫

R3 u20 dx+ 1
2

∫
R3 ϕtu0

u20 dx
,

and so τu0
|u0| ∈ N0. Since [|u0|] ≤ [u0], and noting that the nonlocal term and the

logarithmic term depend only on u2, we have

I0(τ |u0|) ≤ I0(τu0) for all τ > 0.

Let τ|u0| > 0 be the unique value such that τ|u0||u0| ∈ N0. By the definition of the
ground state level c0, we have

c0 ≤ I0(τ|u0||u0|) ≤ I0(τ|u0|u0) ≤ max
τ>0

I0(τu0) = I0(u0) = c0.

This chain of inequalities implies that I0(τ|u0|u0) = I0(u0). Since the map τ 7→
I0(τu0) admits a strict global maximum at τ = 1, we deduce that τ|u0| = 1.
Consequently, |u0| ∈ N0 and I0(|u0|) = c0. Therefore, replacing u0 by |u0| if
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necessary, we may assume that u0 ≥ 0 in R3. Since the nonlinearity f(u) =
u log u2 satisfies the subcritical growth condition, standard regularity arguments
for fractional elliptic equations (see, for instance, the bootstrap method used in
[1] or [21]) imply that u0 ∈ L∞(R3). Consequently, by the regularity results in
Silvestre [40], we conclude that u0 is continuous. Now, assume by contradiction
that there exists x0 ∈ R3 such that u0(x0) = 0. Since u0 ≥ 0 and u0 ̸≡ 0, the
definition of the fractional Laplacian implies that

(−∆)su0 (x0) = −C3,s P.V.

∫
R3

u0(y)

|x0 − y|3+2s
dy < 0.

However, the equation (3.19) gives

(−∆)su0(x0) = −V0u0(x0) + ϕ(x0)u0(x0) + u0(x0) log u
2
0(x0) = 0,

where we used the fact that limt→0+ t log t
2 = 0. This leads to a contradiction.

Thus, u0(x) > 0 for all x ∈ R3. The proof is complete. □

Next, we show that the mountain pass level cε is the ground state level of Iε and
we establish an interesting relation between cε and c0.

Lemma 3.10. The following hold:

(a) cε ≥ α > 0 for all ε > 0.
(b) cε = infu∈Nε

Jε(u) for all ε > 0.
(c) lim supε→0 cε = c0.

Proof. Part (a) follows from Lemma 3.2 (i). In order to prove (b), we take u ∈ Nε

and let Jε(τ̄u) < 0 for some τ̄ > 0. Consider γε : [0, 1] → Hε given by γε(τ) = τ · τ̄u.
Then

cε ≤ max
τ∈[0,1]

Jε (γε(τ)) ≤ max
τ∈[0,1]

Jε(τu) = Jε(u), (3.20)

and by the arbitrariness of u ∈ Nε, we get cε ≤ infu∈Nε
Jε(u). Next, we prove the

reverse inequality. By Lemma 3.6, we know that there exists uε ∈ Hε with uε > 0
in R3 such that

Jε (uε) = cε and 0 ∈ ∂Jε (uε) .

Then, uε ∈ Nε and it holds

cε = Jε (uε) ≥ inf
u∈Nε

Jε(u).

Let us prove (c). To this end, let φ ∈ C∞
c

(
R3
)
be such that 0 ≤ φ ≤ 1, φ = 1 in

B1 and φ = 0 in Bc
2. For R > 0, we set φR(x) = φ

(
x
R

)
and uR(x) = φR(x)u0(x),

where u0 is given by Lemma 3.9. Then, we have uR → u0 in Hs(R3) as R → ∞.
For fixed R > 0, we can proceed as in the proof of (3.20) to obtain that, for a fixed
ε > 0,

cε ≤ max
τ∈[0,1]

Jε (τuR) = Jε(τεuR),

and

∥uR∥2ε =

∫
Ωε

F̃ ′
2 (τεuR)uR

τε
dx+

∫
Ωc

ε

F̃ ′
∗ (τεuR)uR

τε
dx−

∫
R3

F ′
1 (τεuR)uR

τε
dx.
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Since V (εx) → V0 as ε → 0, by the Lebesgue Dominated Convergence Theorem,
we have from the left-hand side of the above equality that

lim
ε→0

∥uR∥2ε = ∥uR∥2YV0
.

Assuming τε → +∞ as ε→ 0, since Ωε → R3 as ε→ 0, it is easy to verify that the
right-hand side of the above equality goes to +∞ as ε→ 0, which is a contradiction.
Thus, τε is bounded in R for ε small enough. Now, we notice that

Jε (τεuR) = I0 (τεuR) +
τ2ε
2

∫
R3

(V (εx)− V0)u
2
R dx

+

∫
Ωε

F̃2 (τεuR) dx+

∫
Ωc

ε

F̃∗ (τεuR) dx−
∫
R3

F̃2 (τεuR) dx

≤ I0 (τRuR) +
τ2ε
2

∫
R3

(V (εx)− V0)u
2
R dx,

where τR > 0 is such that

I0 (τRuR) = max
τ≥0

I0 (τuR) .

Since supx∈BR
|V (εx)− V0| → 0 as ε→ 0, we have

lim sup
ε→0

cε ≤ lim sup
ε→0

Jε (τεuR) ≤ I0 (τRuR) . (3.21)

Similarly, one can verify that {τR} is also bounded for R large, and therefore
|τR| ≤ k for some k > 0 and τR → τ0 for some τ0 > 0. Recalling that F1 is
increasing on (0 + ∞), we have F1 (τRuR) ≤ F1 (ku0). Moreover, since u0 ∈ N0,
we can infer that F1 (ku0) ∈ L1

(
R3
)
. Thus, if R → ∞ and τR → τ0, by Lebesgue

Dominated Convergence theorem, one has

F1(τRuR) → F1(τ0u0) in L1(R3),

and

F ′
1(τRuR)τRuR → F ′

1(τ0u0)τ0u0 in L1(R3).

We claim that τ0 = 1. In fact, using τRuR → τ0u0 in Hs(R3), we reach

c0 ≤ lim
R→∞

I0 (τRuR) = I0(τ0u0) ≤ max
τ>0

I0(τu0) = I0(u0) = c0,

which implies that τ0 = 1. Combining this with (3.21), one gets

lim sup
ε→0

cε ≤ I0 (u0) = c0.

Insofar as

Jε(u) ≥ Iε(u) ≥ I0(u) for all ε > 0, u ∈ D(Jε),

and by part (b) with ε = 0, the reverse inequality holds, namely

lim sup
ε→0

cε ≥ c0.

Hence,

lim
ε→0+

cε = c0,

which concludes the proof. □

Lemma 3.11. Let {ωn}n∈N ⊂ N0 be a sequence satisfying I0 (ωn) → c0, ωn ⇀
ω ̸= 0 and I ′

0(ω)ω ≤ 0, then ωn → ω in Hs(R3).
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Proof. Since I ′
0(ω)ω ≤ 0, there is τ ∈ (0, 1] such that τω ∈ N0 and so

c0 ≤ I0(τω)

=
τ2

2

∫
R3

ω2 dx+
τ4

4

∫
R3

ϕtωω
2 dx

≤ lim inf
n→∞

(
1

2

∫
R3

ω2
n dx+

∫
R3

1

4
ϕtωn

ω2
n dx

)
≤ lim sup

n→∞

(
1

2

∫
R3

ω2
n dx+

∫
R3

1

4
ϕtωn

ω2
n dx

)
= lim

n→∞
I0 (ωn)

= c0.

The above argument yields τ = 1 and ωn → ω in L2(R3). Since {ωn}n∈N is bounded
in L2∗s (R3), by interpolation on the Lebesgue spaces, it follows that

ωn → ω in Lp(R3) for all p ∈ [2, 2∗s),

and therefore
∫
F̃ ′
2 (ωn)ωn dx→

∫
F̃ ′
2(ω)ω dx. Finally, by the equalities I ′

0(ω)ω = 0
and

∥ωn∥YV0
+

∫
F ′
1 (ωn)ωn dx =

∫
F̃ ′
2 (ωn)ωn dx,

we get

∥ωn∥YV0
→ ∥ω∥YV0

in Hs(R3),

from which the desired result follows. □

The next lemma plays an important role in describing the concentration phe-
nomena of solutions with respect to ε.

Lemma 3.12. Let εn → 0 and un ∈ Hεn satisfying Jεn (un) = cεn and J ′
εn (un) =

0. Then there exists a sequence {xn}n∈N ⊂ R3 such that ũn = un (x+ xn) possesses
a convergent subsequence in Hs(R3). Moreover, there is x0 ∈ Ω such that

lim
n→∞

εnxn = x0 and V (x0) = V0.

Proof. From Lemma 3.10 (c), we observe that cεn → c0 > 0 as n → ∞. Using the
same method in Lemma 3.3, we can prove that {un}n∈N is bounded in Hεn .

Step 1: We claim there exist r, β > 0 and a sequence {xn}n∈N ⊂ R3 such that

lim sup
n→∞

∫
Br(xn)

|un(x)|2 dx ≥ β.

Supposing that there is r0 such that

lim sup
n→∞

∫
Br0

(xn)

|un(x)|2 dx = 0.

Then, by Lemma 2.2, one obtains

un → 0 in Lp(R3) for p ∈ (2, 2∗s).

Thus, we have Jεn (un) = cεn → 0 as n→ ∞, which is a contradiction.
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Step 2: Set ũn = un (x+ xn), then {ũn}n∈N is bounded and there exists ũ ∈
Hs(R3) such that

ũn ⇀ ũ in Hs(R3)

and ∫
Br(0)

|ũ|2 dx ≥ β. (3.22)

Hence, ũ ̸= 0.
Step 3: In what follows, we prove that the sequence {εnxn}n∈N ⊂ Ω. Arguing

by contradiction and suppose there exist ς > 0 and a subsequence of {εnxn}n∈N,
not relabeled, such that

dist
(
εnxn,Ω

)
≥ ς for all n ∈ N.

Then, we can find r > 0 such that

Br (εnxn) ⊂ Ωc for all n ∈ N. (3.23)

Choosing a nonnegative sequence {wj}j∈N ⊂ C∞
0 (R3) such that

wj → ũ in Hs(R3). (3.24)

For fixed j ∈ N, J ′
εn (ũn)wj = 0, that is,∫∫
R6

(ũn(x)− ũn(y)) (wj(x)− wj(y))

|x− y|3+2s
dx dy

+

∫
R3

(V (εnx+ εnxn) + 1) ũnwj dx

=

∫
R3

G′
2 (εnx+ εnxn, ũn)wj dx−

∫
R3

F ′
1 (ũn)wj dx.

In view of (3.23) and the definition of G′
2, one has∫

R3

G′
2 (εnx+ εnxn, ũn)wj dx

=

∫
B r

εn
(0)

G′
2 (εnx+ εnxn, ũn)wj dx+

∫
Bc

r
εn

(0)

G′
2 (εnx+ εnxn, ũn)wj dx

≤ θ

∫
B r

εn
(0)

ũnwj dx+

∫
Bc

r
εn

(0)

F ′
2 (ũn)wj dx+

∫
Bc

r
εn

(0)

ϕtũn
ũnwj dx,

from which we conclude that∫∫
R6

(ũn(x)− ũn(y)) (wj(x)− wj(y))

|x− y|3+2s
dx dy

+

∫
R3

(V (εnx+ εnxn) + 1) ũnwj dx

≤ θ

∫
B r

εn
(0)

ũnwj dx+

∫
Bc

r
εn

(0)

F ′
2 (ũn)wj dx

+

∫
Bc

r
εn

(0)

ϕtũn
ũnwj dx−

∫
R3

F ′
1 (ũn)wj dx.
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Since θ ≤ V0+1
4 and F ′

1 (ũn)wj > 0, we obtain∫∫
R6

(ũn(x)− ũn(y)) (wj(x)− wj(y))

|x− y|3+2s
dx dy + Ṽ

∫
R3

ũnwj dx

≤
∫
Bc

r
εn

F ′
2 (ũn)wj dx+

∫
Bc

r
εn

(0)

ϕtũn
ũnwj dx,

where Ṽ = V0 + 1− θ. By Lemma 2.3, (2.7) and the boundedness of {ũn}n∈N, we
can infer that∫

Bc
r
εn

(0)

F ′
2 (ũn)wj dx→ 0 and

∫
Bc

r
εn

(0)

ϕtũn
ũnwj dx→ 0 as n→ ∞,

and ∫∫
R6

(ũn(x)− ũn(y)) (wj(x)− wj(y))

|x− y|3+2s
dx dy + Ṽ

∫
R3

ũnwj dx

−→
∫∫

R6

(ũ(x)− ũ(y)) (wj(x)− wj(y))

|x− y|3+2s
dx dy + Ṽ

∫
R3

ũwj dx.

Therefore,∫∫
R6

(ũ(x)− ũ(y)) (wj(x)− wj(y))

|x− y|3+2s
dx dy + Ṽ

∫
R3

ũwj dx ≤ 0.

Let j → ∞ in the above inequality, it follows from (3.24) that

[ũ]2 + Ṽ

∫
R3

ũ2 dx = 0,

which contradicts (3.22). Therefore, we conclude that {εnxn}n∈N ⊂ Ω.
Step 4: From this fact, we can find x0 ∈ Ω such that

εnxn → x0 as n→ ∞.

Following the spirit of (c) in Lemma 3.10, we can prove that x0 ∈ Ω. Indeed, since
ũn is a solution, by the definition of G′

2, for any ψ ∈ C∞
0 (R3), we have∫∫

R6

(ũn(x)− ũn(y)) (ψ(x)− ψ(y))

|x− y|3+2s
dx dy +

∫
R3

(V (εnx+ εnxn) + 1) ũnψ dx

≤
∫
R3

F ′
2 (ũn)ψ dx+

∫
R3

ϕtũn
ũnψ dx−

∫
R3

F ′
1 (ũn)wj dx.

Using ũn ⇀ ũ ̸= 0 and εnxn → x0, there holds∫∫
R6

(ũn(x)− ũn(y)) (ψ(x)− ψ(y))

|x− y|3+2s
dx dy +

∫
R3

(V (x0) + 1) ũψ dx

≤
∫
R3

F ′
2(ũ)ψ dx+

∫
R3

ϕtũũψ dx−
∫
R3

F ′
1(ũ)wj dx,

which deduces

[ũ] +

∫
R3

(V (x0) + 1) ũ2 dx

≤
∫
R3

F ′
2(ũ)ũ dx+

∫
R3

ϕtũũ
2 dx−

∫
R3

F ′
1(ũ)ũ dx.

(3.25)
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Hence, there exists τ1 ∈ (0, 1] such that

τ1ũ ∈ NV (x0) =
{
u ∈ Hs

(
R3
)
\ {0} : I ′

V (x0)
(u)u = 0

}
,

where

IV (x0) =
1

2
∥u∥2YV (x0)

− 1

4

∫
R3

ϕtuu
2 dx− 1

2

∫
R3

u2 log u2 dx.

Denoted by cV (x0) the least energy of IV (x0), then

cV (x0) ≤ IV (x0) (τ1ũ) ≤ lim inf
n→∞

Jεn (un) = lim inf
n→∞

cεn = c0,

which implies that cV (x0) ≤ c0. Thus we have V (x0) ≤ V0. Since V (x) ≥ V0 for
any x ∈ Ω and V (x) > V0 for any x ∈ ∂Ω, we infer that V (x0) = V0 and x0 ∈ Ω.

Step 5: In the sequel, we are going to prove that

ũn → ũ in Hs(R3).

For each n ∈ N, there exists ζn ∈ R such that ūn = ζnũn ∈ N0. Then,

c0 ≤ I0 (ūn) ≤ max
τ≥0

Jεn (τ ũn) = Jεn (un) = cεn .

Then (c) of Lemma 3.10 gives that I0 (ūn) → c0. Moreover, one can easily prove
that {ūn}n∈N and {ζn}n∈N are both bounded. Thus, we can assume ζn → ζ0 and
ūn ⇀ ū = ζ0ũ for some ζ0 > 0. Similar to (3.25), we can also prove I ′

0(ū)ū ≤ 0.
Then, by applying Lemma 3.11, we have

ūn → ū in Hs(R3),

or equivalently,

ũn → ũ in Hs(R3),

which finishes the proof. □

The following lemma is crucial in proving that the solutions of the auxiliary
problem (3.1) are the solutions of the original problem (2.3). We shall adopt some
ideas found in Ambrosio [6].

Lemma 3.13. Let {ũn}n∈N be given as in Lemma 3.12. Then {ũn}n∈N ⊂ L∞(R3)
and there exists K > 0 such that

|ũn|∞ ≤ K for all n ∈ N.
Moreover, there holds

ũn(x) → 0 as |x| → +∞.

Proof. For each L > 0, let ũL,n := min {ũn, L} and denote the function

ℓ(τ) := ℓL,σ(τ) = ττ
2(σ−1)
L ∈ Hε,

with σ > 1 to be determined later. Note that ℓ is increasing, thus we have

(a− b)(ℓ(a)− ℓ(b)) ≥ 0 for any a, b ∈ R.
Consider the functions

Q(t) :=
|t|2

2
and L(t) :=

∫ t

0

(ℓ′(τ))
1
2 dτ,
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and note that

L(τ) ≥ 1

σ
ττσ−1

L .

Hence, from Lemma 2.1, we obtain

[L(ũn)]2 ≥ S−1
∗ |L(ũn)|22∗s ≥ S−1

∗
1

σ2
|ũnũσ−1

L,n |22∗s . (3.26)

In addition, for any a, b ∈ R, it holds
Q′(a− b)(ℓ(a)− ℓ(b)) ≥ |L(a)− L(b)|2.

In fact, suppose that a > b, it follows from Jensen’s inequality that

Q′(a− b)(ℓ(a)− ℓ(b)) = (a− b)(ℓ(a)− ℓ(b))

= (a− b)

∫ a

b

ℓ′(τ) dτ

= (a− b)

∫ a

b

(L′(τ))2 dτ

≥
(∫ a

b

L′(τ) dτ

)2

= (L(a)− L(b))2.
A similar argument holds if a ≤ b. Thus, we infer that

|L(ũn)(x)− L(ũn)(y)|2 ≤ (ũn(x)− ũn(y))
(
ũn(x)ũ

2(σ−1)
L,n (x)− ũn(y)ũ

2(σ−1)
L,n (y)

)
.

Using ℓ(ũn) as test function in (3.1), in view of the above inequality and ϕtũn
≥ 0,

we get that

[L(ũn)]2 +
∫
R3

(V (εnx+ εnxn) + 1) ũ2nũ
2(σ−1)
L,n dx+

∫
R3

F ′
1(u)ũnũ

2(σ−1)
L,n dx

≤
∫∫

R6

(ũn(x)− ũn(y))
(
ũn(x)ũ

2(σ−1)
L,n (x)− ũn(y)ũ

2(σ−1)
L,n (y)

)
|x− y|3+2s

dx dy

+

∫
R3

(Vε(x) + 1) ũ2nũ
2(σ−1)
L,n dx+

∫
R3

F ′
1(ũn)ũnũ

2(σ−1)
L,n dx

≤
∫
R3

G′
2(εnx+ εnxn, ũn)ũnũ

2(σ−1)
L,n dx.

By the definition of G′
2, fixed p ∈ (2, 2∗s), there exists C > 0 such that

0 ≤ G′
2(x, τ) ≤ θτ + Cτp−1 for (x, τ) ∈ R3 × [0,∞).

The above estimates, (3.26), (V1) and V0 + 1− θ ≥ 3θ > 0 provide

|ũnũσ−1
L,n |22∗s ≤ σ2S∗ [L(ũn)]2 ≤ σ2S∗

∫
R3

ũpnũ
2(σ−1)
L,n dx. (3.27)

Since ũpnũ
2(σ−1)
L,n = ũp−2

n (ũnũ
σ−1
L,n )2, we can use (3.27) and Hölder’s inequality to

deduce that

|ũnũσ−1
L,n |22∗s ≤ σ2S∗|ũn|p−2

2∗s
|ũnũσ−1

L,n |2α∗
s
,

where

α∗
s =

22∗s
2∗s − (p− 2)

∈ (2, 2∗s).
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Since u is bounded, we conclude that

|ũnũσ−1
L,n |22∗s ≤ σ2S∗|ũnũσ−1

L,n |2α∗
s
.

Note that, if ũn ∈ Lσα∗
s (R3), using the fact that ũL,n ≤ ũn, then

|ũnũσ−1
L,n |22∗s ≤ σ2S∗|ũn|2σσα∗

s
<∞,

which together with Fatou’s lemma implies

|ũn|2σσ2∗s ≤ Cσ2|ũn|2σσα∗
s
,

as L→ ∞. Now, taking σ = 2∗s/α
∗
s > 0, we have

|ũn|2σσ2∗s ≤ Cσ2|ũn|2σ2∗s ,

and replacing σ by σj , j ∈ N, in the above inequality, we obtain that

|ũn|2σ
j

σj2∗s
≤ C(σj)2|ũn|2σ

j

2∗s
.

Then, by an argument of induction, we may verify that

|ũn|2∗sσj ≤ σ
1
σ+ 2

σ2 +···+ j

σj (2C)
1
2 (

1
σ+ 1

σ2 +···+ 1

σj )|ũn|2∗s , (3.28)

for every j ∈ N. Note that
∞∑
j=1

1

σj
=

1

σ − 1
and

∞∑
j=1

i

σj
=

σ

(σ − 1)2
.

Since σ > 1, passing to the limit as j → ∞ in (3.28), we may infer that u ∈ L∞(RN )
and

|ũn|∞ ≤ σ
σ

(σ−1)2 (2C)
1

σ−1 |ũn|2∗s .

Using |ũn|2∗s ≤M , it shows that ũn ∈ L∞(R3) and

|ũn|∞ ≤ K.

In particular, by interpolation, |ũn|r ≤ K for all n ∈ N and r ∈ [2,∞], and
ũn → ũ in Lr(R3) for all r ∈ [2,∞). Now, we notice that ũn satisfies

(−∆)
s
ũn + θũn ≤ Cũp−1

n in R3.

Let zn ∈ Hs(R3) be such that

(−∆)
s
zn + θzn = Cũp−1

n in R3. (3.29)

Applying Del Pezzo-Quaas [18], we can see 0 ≤ ũn ≤ zn in R3. By (3.29), we derive
that

[zn]
2 + θ|zn|22 = C

∫
R3

ũp−1
n zn dx,

and applying the Young’s inequality we get, for all η ∈ (0, θ),

[zn]
2 + θ|zn|22 ≤ η|zn|22 + C

∫
R3

ũ2(p−1)
n dx.

Since
∫
R3 ũ

2(p−1)
n dx ≤ C for all n ∈ N (note that 2(p − 1) > 2), we deduce that

∥zn∥ ≤ C for all n ∈ N. Then, up to a subsequence, we may assume that zn ⇀ z
in Hs(R3). Since ũn → ũ in L2(p−1)(R3), it follows from the weak formulation of
the equation solved by zn that z solves

(−∆)
s
z + θz = Cũp−1 in R3.
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Then, observing that

[zn]
2 + θ|zn|22 = C

∫
R3

ũp−1
n zn dx,

and

[z]2 + θ|z|22 = C

∫
R3

ũp−1z dx,

and that ∫
R3

ũp−1
n zn dx→

∫
R3

ũp−1z dx,

we deduce that

[zn]
2 + θ|zn|22 = [z]2 + θ|z|22 + on(1).

Recalling that Hs(R3) is a uniformly convex space, we see that zn → z in Hs(R3).

Since Cũp−1
n ≤ Czp−1

n , we can see that if we test (3.29) by znz
2(σ−1)
L,n , we can proceed

as before to obtain the estimate

|znzσ−1
L,n |22∗s ≤ σ2C∗

∫
R3

zpnz
2(σ−1)
L,n dx,

instead of (3.27). Using |zn|2∗s ≤ C for all n ∈ N, we can perform the same iteration
argument given above to deduce that

|zn|∞ ≤ K for all n ∈ N. (3.30)

By Iannizzotto-Mosconi-Squassina [26] and using (3.30), we deduce that

∥zn∥C0,α(R3) ≤ C for all n ∈ N,

for some α ∈ (0, 1) independent of n ∈ N. Combining this fact with zn → z in
L2(R3), we can apply Ambrosio [7] to conclude that lim|x|→∞ supn∈N |zn(x)| = 0.

This and 0 ≤ ũn ≤ zn in R3 yield lim|x|→∞ supn∈N |ũn(x)| = 0. □

4. Proof of Theorem 1.1

Lemma 4.1. Let εn → 0 and un ∈ Nεn be a solution of (3.1). Then there exists
n∗ ∈ N such that

F̃ ′
2(un)

un
≤ θ for all x ∈ Ωc

εn and for all n ≥ n∗.

Proof. By Lemma 3.12, there exists a sequence {xn}n∈N ⊂ R such that ũn(x) =
un (x+ xn) has a convergent subsequence and εnxn → x0 ∈ Ω as n → ∞. Then,
there exists r > 0 such that for any n ∈ N, Br (εnxn) ⊂ Ω, which impliesB r

εn
(xn) ⊂

Ωεn and Ωc
εn ⊂ R3 \B r

εn
(xn). Furthermore, we observe that

∣∣ϕtũn
(x)
∣∣ = ∣∣∣∣∣

∫
R3

|ũn(y)|2

|x− y|3−2t
dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|x−y|≤1

|ũn(y)|2

|x− y|3−2t
dy

∣∣∣∣∣+
∣∣∣∣∣
∫
|x−y|>1

|ũn(y)|2

|x− y|3−2t
dy

∣∣∣∣∣
≤ C|ũn|2∞ + |ũn|22,
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which, together with Lemma 3.13 and (2.7), implies that for θ > 0 given above,
there exist R > 0 and n1 ∈ N such that

F̃ ′
2 (ũn)

ũn
=
F ′
2 (ũn)

ũn
+ ϕtũn

≤ θ for all |x| ≥ R and n ≥ n1.

Recall un(x) = ũn (x+ xn). Then we have

F̃ ′
2 (ũn)

ũn
≤ θ for all x ∈ R3 \BR (xn) and n ≥ n1.

On the other hand, for given R > 0 above, there exists n2 ∈ N such that for n ≥ n2

Ωc
εn ⊂ R3 \B r

εn
(xn) ⊂ R3 \BR (xn) .

Taking n∗ = max {n1, n2}, we can conclude that

F̃ ′
2 (ũn)

ũn
≤ θ for all x ∈ Ωc

εn and n ≥ n∗.

□

Now we are in the position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 3.6, problem (3.1) has a positive solution uε for
each ε > 0. Furthermore, Lemma 4.1 implies that there exists ε∗ > 0 small such
that

F̃ ′
2 (uε)

uε
≤ θ for x ∈ Ωc

ε and ε ∈ (0, ε∗) .

This implies that uε is a positive solution of (2.3). Letting

wε(x) = uε

(x
ε

)
,

we know that wε(x) is a positive solution of the original problem (1.5).
Now, we study the concentration behavior of the solutions. Let εn → 0 and

un ∈ Hεn be a positive solution with ε = εn in (3.1). Let ũn = un (x+ xn), where
xn is given in Lemma 3.12. First, we claim that there exists ϱ̃ > 0 such that

|ũn|∞ ≥ ϱ̃ for any n ∈ N. (4.1)

Indeed, if |ũn|∞ → 0, then there is n3 ∈ N such that, for all n ≥ n3,

G′
2 (εnx+ εnxn, ũn) ≤

V0
2
ũn.

Then,

∥ũn∥2YV0
≤ ∥ũn∥2εn ≤

∫
R3

G′
2 (εnx+ εnxn, ũn) ũn dx ≤ V0

2

∫
R3

ũ2n dx.

Thus ũn ≡ 0 for all n ≥ n3, which contradicts the fact that ũn → ũ ̸= 0. Hence,
(4.1) holds, and we can infer that ũn admits a global maximum point qn ∈ BR∗(0)
for some R∗ > 0. Set yn := εn (qn + xn) which is the maximum point of wn(x).
Moreover, regarding from Lemma 3.12, we have that {yn}n∈N is bounded and

yn → y0 ∈ Ω as n→ ∞.

Therefore, we can conclude that

lim
n→∞

V (yn) = V (x0) = V0.

□
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Laplacian, Rev. Mat. Iberoam. 32 (2016), no. 4, 1353–1392.
[27] C. Ji, Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-

Poisson system in R3, Ann. Mat. Pura Appl. (4) 198 (2019), no. 5, 1563–1579.

[28] C. Ji, A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on the
potential, J. Math. Anal. Appl. 437 (2016), no. 1, 241–254.

[29] E.H. Lieb, M. Loss, “Analysis”, Second Edition, American Mathematical Society, Providence,

RI, 2001.
[30] Z. Liu, J. Zhang, Multiplicity and concentration of positive solutions for the fractional

Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var. 23
(2017), no. 4, 1515–1542.

[31] Y. Meng, X. Zhang, X. He, Ground state solutions for a class of fractional Schrödinger-

Poisson system with critical growth and vanishing potentials, Adv. Nonlinear Anal. 10 (2021),
no. 1, 1328–1355.

[32] G. Molica Bisci, V.D. Radulescu, R. Servadei, “Variational Methods for Nonlocal Fractional

Problems”, Cambridge University Press, Cambridge, 2016.
[33] E.G. Murcia, G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson

system, Differential Integral Equations 30 (2017), no. 3-4, 231–258.

[34] X. Peng, Existence and concentration behavior of solutions for the logarithmic Schrödinger-
Poisson system via penalization method, J. Math. Anal. Appl. 513 (2022), no. 2, Paper No.

126249, 24 pp.

[35] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff
type equations involving the fractional p-Laplacian in RN , Calc. Var. Partial Differential

Equations 54 (2015), no. 3, 2785–2806.
[36] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional

p-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), no. 1, 27–55.

[37] S. Qu, X. He, On the number of concentrating solutions of a fractional Schrödinger-Poisson
system with doubly critical growth, Anal. Math. Phys. 12 (2022), no. 2, Paper No. 59, 49 pp.

[38] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43

(1992), no. 2, 270–291.
[39] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J.

Funct. Anal. 237 (2006), no. 2, 655–674.

[40] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,
Comm. Pure Appl. Math. 60 (2007), no. 1, 67–112.

[41] M. Squassina, A. Szulkin, Multiple solutions to logarithmic Schrödinger equations with peri-

odic potential, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 585–597.
[42] M. Squassina, A. Szulkin, Erratum to: Multiple solutions to logarithmic Schrödinger equa-

tions with periodic potential [MR3385171], Calc. Var. Partial Differential Equations 56
(2017), no. 3, Paper No. 56, 4 pp.

[43] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to non-

linear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), no. 2,
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