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Abstract. We prove existence results for the parabolic double phase obstacle

problem: Find u ∈ K ⊂ X0 with u(·, 0) = 0 satisfying

0 ∈ ut +Au+ F (u) + ∂IK(u) in X∗
0 ,

where A : X0 → X∗
0 given by

Au := − div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for u ∈ X0,

is the double phase operator acting on X0 = Lp(0, τ ;W 1,H
0 (Ω)) withW 1,H

0 (Ω)

denoting the associated Musielak-Orlicz Sobolev space with generalized homo-

geneous boundary values. The obstacle is represented by the closed convex set
K with the obstacle function ψ through

K = {v ∈ X0 : v(x, t) ≤ ψ(x, t) for a.a. (x, t) ∈ Q = Ω× (0, τ)}
and IK is the indicator function related to K with ∂IK denoting its subdiffer-

ential in the sense of convex analysis.

1. Introduction and Main Results

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω and Q = Ω ×
(0, τ), τ > 0, the space-time cylindrical domain. In this paper we consider the
following parabolic obstacle problem: Find u ∈ K ⊂ X0 with u(·, 0) = 0 such that

0 ∈ ut +Au+ F (u) + ∂IK(u) in X∗
0 , (1.1)

where A : X0 → X∗
0 given by

Au := −div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
for u ∈ X0,

is the double phase operator acting on X0 = Lp(0, τ ;W 1,H
0 (Ω)) with W 1,H

0 (Ω)
denoting the associated Musielak-Orlicz Sobolev space with generalized homoge-
neous boundary values which is a closed subspace of the Musielak-Orlicz Sobolev
space W 1,H(Ω) whose precise definition is provided in Section 2. The obstacle is
represented by the closed convex set K with the obstacle function ψ through

K = {v ∈ X0 : v(x, t) ≤ ψ(x, t) for a.a. (x, t) ∈ Q}
and IK is the indicator function related to K with ∂IK denoting its subdifferential

in the sense of convex analysis. The time derivative ut :=
du(·,t)

dt is understood as
the distributional time-derivative of the vector space-valued function t 7→ u(·, t) ∈
W 1,H

0 (Ω) with t ∈ (0, τ). By definition of the subdifferential ∂IK , the obstacle
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problem (1.1) is equivalent to the following parabolic variational inequality: Find
u ∈ K with u(·, 0) = 0 such that

⟨ut +Au+ F (u), v − u⟩ ≥ 0 for all v ∈ K, (1.2)

where ⟨·, ·⟩ denotes the duality pairing between X0 and its dual X∗
0 , and F is

the Nemytskij operator generated by the nonlinearity f : Q × R → R through
F (u)(x, t) = f(x, t, u(x, t)). Let us introduce the function spaces Y0 and Y by
means of X0 and X = Lp(0, τ ;W 1,H(Ω)), respectively, as follows

Y0 = {u ∈ X0 : ut ∈ X∗
0} and Y = {u ∈ X : ut ∈ X∗} .

It will be seen that Y0 and Y are separable, uniformly convex Banach spaces
equipped with the norms

∥u∥Y0
= ∥u∥X0

+ ∥ut∥X∗
0

and ∥u∥Y = ∥u∥X + ∥ut∥X∗ ,

where ∥ · ∥X0
, ∥ · ∥X are defined by

∥u∥X0
=

(∫ τ

0

∥u(·, t)∥pV0
dt

) 1
p

, ∥u∥X =

(∫ τ

0

∥u(·, t)∥pV dt

) 1
p

,

with ∥ · ∥V0
, ∥ · ∥V being the norms in V0 :=W 1,H

0 (Ω), V :=W 1,H(Ω), respectively,

and X∗
0 = Lp′

(0, τ ; (W 1,H
0 (Ω))∗) and X∗ = Lp′

(0, τ ; (W 1,H(Ω))∗) are equipped with
the norms ∥ · ∥X∗

0
and ∥ · ∥X∗ , given by

∥u∥X∗
0
=

(∫ τ

0

∥u(·, t)∥p
′

V ∗
0
dt

) 1
p′

, ∥u∥X =

(∫ τ

0

∥u(·, t)∥p
′

V ∗ dt

) 1
p′

,

with 1
p +

1
p′ = 1. We assume the following hypotheses on the data of the variational

inequality (1.2):

(H1) 2 ≤ p < N , p < q < p∗ = Np
N−p and 0 ≤ µ(·) ∈ L∞(Ω);

(H2) the obstacle function ψ : Q→ R is supposed to satisfy

ψ ∈ Y, ψ(·, 0) ≥ 0 in Ω, ψ|Σ ≥ 0,

⟨ψt +Aψ,φ⟩ ≥ 0 for all φ ∈ X0 with φ ≥ 0,

with Σ being the lateral boundary of Q;
(H3) f : Q × R → R is a Carathéodory function, that is, (x, t) 7→ f(x, t, s) is

measurable in Q for all s ∈ R and s 7→ f(x, t, s) is continuous in R for
a.a. (x, t) ∈ Q. Further, f satisfies the following growth condition

|f(x, t, s)| ≤ α(x, t) + β|s|p−1 (1.3)

for a.a. (x, t) ∈ Q and for all s ∈ R where α ∈ Lp′
(Q) as well as β ≥ 0.

Definition 1.1. A function u ∈ Y0 ∩K is called a solution of the obstacle problem
(1.1) (resp. (1.2)) if u(·, 0) = 0 and the variational inequality

⟨ut, v − u⟩+
∫
Q

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· (∇v −∇u) dxdt

+

∫
Q

F (u)(v − u) dxdt ≥ 0 for all v ∈ K,

is satisfied.

The main result in this paper reads as follows.
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Theorem 1.2. Assume hypotheses (H1)–(H3) and suppose that

1

∥u∥X0

⟨Au+ F (u), u⟩ → ∞ as ∥u∥X0 → ∞ (1.4)

is satisfied. Then the parabolic obstacle problem (1.1) (resp. (1.2)) admits at least
one solution u ∈ Y0.

The study of variational inequalities dates its origins back to the calculus of
variations, however its systematic development only began in the 1960s, initiated
by the works of Fichera [18] and Stampacchia [33, 34], which was motivated by
problems in mechanics, like obstacle problems in elasticity. Following the ground-
breaking contributions of Lions-Stampacchia [26], the exploration of variational
inequalities gained strong development, evolving into a significant domain within
nonlinear analysis, calculus of variations, optimization theory, and various branches
of mechanics, mathematical physics and engineering.

In recent years elliptic as well as parabolic problems governed by the double
phase operator

Au := −div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
and variants of it have gained increasing importance due to its applications in
various fields of applied sciences such as nonlinear elasticity theory of composite
materials (see e.g. Zhikov [45, 46]), on transonic flows (see e.g. Bahrouni-Rădulescu-
Repovš [4]), on quantum physics (see e.g. Benci-D’Avenia-Fortunato-Pisani [5]), on
stationary reaction diffusion systems (see e.g. Cherfils-Il’yasov [15]), image noise re-
moval and image processing (see e.g.Kbiri Alaoui-Nabil-Altanji [1], Charkaoui-Ben-
Loghfyry-Zeng [14], Chen-Levine [16], Harjulehto-Hästö [21], Harjulehto-Hästö-
Latvala-Toivanen [22] and Li-Li-Pi [24]), or heat diffusion in materials with het-
erogeneous thermal properties (see e.g. Arora-Shmarev [2]). A comprehensive re-
view of the current state of the theory concerning elliptic variational problems
with nonstandard growth conditions including double phase problems is given in
Mingione-Rădulescu [29]. The ability to capture different behaviors of the specific
medium in different regions makes the double phase operator a powerful tool. The
origin of the double phase operator is related with the following ’energy functional’

Φ(u) =

∫
Ω

(|∇u|p + µ(x)|∇u|q) dx, u ∈W 1,H
0 (Ω),

which was first introduced by Zhikov (see [45, 46]) to describe models for strongly
anisotropic materials. It describes the phenomenon that the energy density changes
its ellipticity and growth properties according to the point x ∈ Ω. In nonlinear
elasticity theory the functional Φ can be used as a model for composite media with
different hardening exponents p and q. The geometry of the mixture of the two
materials is then described by the zero set {x ∈ Ω: µ(x) = 0} of the modulating
coefficient x 7→ µ(x), where the transition from q-growth to p-growth takes place.
That is why Φ is called double phase functional.

In order to get an idea of how the double phase integral is related to the double
phase operator, let Ω be some composite material, which undergoes deformation
by exerting an external force f , which may nonlinearly depend on the deformation
u(x), that is x 7→ f(x, u(x)). Then the total energy E stored is mathematically
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described by

E(u) =

∫
Ω

(
1

p
|∇u|p + 1

q
µ(x)|∇u|q

)
dx+

∫
Ω

G(x, u) dx, u ∈W 1,H
0 (Ω), (1.5)

where G(x, u) =
∫ u

0
f(x, s) ds is the primitive of f . Note that the first integral on

the right-hand side of (1.5) is basically a multiple of Φ, which is immaterial with
respect to the energy balance. According to fundamental physical principle, the
deformation u we are looking for is obtained by minimizing the energy functional,

that is, we need to solve the minimization problem: Find u ∈W 1,H
0 (Ω) such that

E(u) = inf
v∈W 1,H

0 (Ω)
E(v).

Since E : W 1,H
0 (Ω) → R is a C1-functional, which – under certain growth restric-

tions on s 7→ f(x, s) – is bounded below, coercive, and weakly lower semicontinuous,
such that a global minimizer exists. Therefore, a necessary condition is E′(u) = 0,
where E′ denotes the Frechet derivative of E, that is,

⟨E′(u), φ⟩ = 0 for all φ ∈W 1,H
0 (Ω), (1.6)

where here ⟨·, ·⟩ denotes the duality pairing between W 1,H
0 (Ω) and its dual space.

Calculating the Frechet derivative (1.6) becomes∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇φdx+

∫
Ω

f(x, u)φdx = 0

for all φ ∈ W 1,H
0 (Ω), which is nothing but the weak formulation of the following

Dirichlet problem

Au+ f(x, u) = 0 in Ω, u = 0 on ∂Ω,

where A is the double phase operator.
Now consider the problem of deformation of the composite material under an

additional constraint given by an obstacle K of the form

K =
{
v ∈W 1,H

0 (Ω): v(x) ≤ ψ(x) for x ∈ Ω
}
,

which means, we are looking for deformations u that, in addition, satisfy u(x) ≤
ψ(x). In this situation the deformation is obtained as the solution of the following
minimization problem under constraint: Find u ∈ K such that

E(u) = inf
v∈K

E(v) = inf
v∈W 1,H

0 (Ω)
[E(v) + IK(v)], (1.7)

where IK is the indicator function related to K. By standard variational calcu-
lus, a necessary condition for finding u satisfying (1.7) is the following variational
inequality: Find u ∈ K such that

⟨E′(u), v − u⟩ ≥ 0 for all v ∈ K,

which is equivalent to the following elliptic double phase variational inequality∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇(v − u) dx

+

∫
Ω

f(x, u)(v − u) dx ≥ 0 for all v ∈ K.

(1.8)

In this paper we consider the evolutionary counterpart of the elliptic double
phase variational inequality (1.8), which is the parabolic double phase variational
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inequality (1.2). Consider first the following Cauchy-Dirichlet problem for the par-
abolic double phase equation

ut +Au+ F (u) = 0 in Q, u = 0 on ∂Ω× (0, τ), u(x, 0) = u0(x) in Ω.

Existence results for the Cauchy-Dirichlet problem of the parabolic double phase
equation under homogeneous Dirichlet data on the lateral boundary ∂Ω × (0, τ)
have been obtained e.g. by Arora-Shmarev [2] and Bögelein-Duzaar-Marcellini [8].
Similaraly as in the stationary case considered before, this kind of problems may
be used e.g. as a mathematical model describing the thermal diffusion in heteroge-
neous media, where the heat conduction in composite materials with varying ther-
mal properties is described through the double phase operator A. In this context,
the parabolic double phase variational inequality (1.2) stands for a heat conduc-
tion model in some composite materials with varying thermal properties under the
additional constraint given by K.

Unlike in the treatment of an elliptic double phase obstacle problem, in the treat-
ment of the evolutionary obstacle problem considered here an additional difficulty
arises, which is due to the subdifferential of the indicator function ∂IK in (1.1).
Because of this no growth condition can be assumed on ∂IK , and thus, in general
there is no growth estimate of the time derivative ut in the dual space X∗

0 available,
which would be needed for proving existence of solutions. In case that K admits a
nonempty interior, that is, int(K) ̸= ∅, this difficulty can be overcome by applying
Rockafellar’s theorem about the sums of maximal monotone operators, which allows
to study evolutionary variational inequalities by implementation of arguments and
results for elliptic variational inequalities to evolutionary variational inequalities.
Unfortunately, the interior of the constraint K we are dealing with is empty, i.e.,
int(K) = ∅, and therefore a similar approach as for elliptic variational inequalities
cannot be applied. Instead, we are dealing with this difficulty by using a penalty
technique.

As far as we know this is the first work dealing with existence results for parabolic
double phase obstacle problems. Our main goal is to establish a functional analytic
framework and derive existence results for parabolic double phase obstacle problems
(1.1), resp. (1.2).

In the case of parabolic double phase equations we refer to the work of Arora-
Shmarev [2] who considered parabolic equations of the form

ut − div
(
|∇u|p(z)−2∇u+ a(z)|∇u|q(z)−2∇u

)
= F (x, u,∇u) in QT = Ω× (0, T )

for z = (x, t) ∈ Q with

2N

N + 2
< p− ≤ p(z) ≤ q(z) < p(z) +

r∗

2
, r∗ = r∗(p−, N), p− = min

QT

p(z).

Under certain conditions on the right-hand side the existence of a unique solution
has been shown. The same authors [3] obtained the unique strong solution with a
certain kind of regularity to the parabolic equation

ut − div
(
a(z)|∇u|p(z)−2∇u+ b(z)|∇u|q(z)−2∇u

)
= f

for z = (x, t) ∈ QT = Ω× (0, T ). Yuan-Ge-Cao-Zhang [35] proved the existence of
solutions for parabolic problems with the limiting case of double phase flux given
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by 
ut − div

(
Du
|Du| + µ(x) Du

|Du|

)
= f(x, u) in Ω× (0,+∞),

u = 0 in ∂Ω× (0,+∞),

u(x, 0) = u0(x) in Ω,

with a Carathéodory function f : Ω×R → R that fulfills the Ambrosetti–Rabinowitz
condition. Finally, we mention some works dealing with regularity results for
local and nonlocal parabolic double phase type, see, for example, Buryachenko-
Skrypnik [9] (local continuity and Harnack’s inequality for parabolic double phase
equations), Giacomoni-Kumar-Sreenadh [19] (Hölder regularity results for nonlocal
parabolic double phase problems), Grimaldi-Ipocoana [20] (higher differentiability
results), Kim-Kinnunen-Moring [23] (gradient higher integrability for degenerate
parabolic double phase systems), Meng-Zhang [28] (asymptotic mean value prop-
erties), Prasad-Tewary [30] (local boundedness to nonlocal parabolic double phase
equations), Savchenko-Skrypnik-Yevgenieva [31] (Harnack’s inequality for degener-
ate parabolic double phase equations under the non-logarithmic Zhikov’s condition),
Shang-Zhang [32] (regularity for mixed local and nonlocal parabolic double phase
equations) and the references therein. In the case of elliptic double phase obsta-
cle problems there are some more references in the direction of existence results
and regularity properties. We mention, for example, the papers of Byun-Cho-Oh
[11], Byun-Liang-Zheng [10], Zeng-Bai-Gasiński-Winkert [38], Zeng-Bai-Rădulescu-
Winkert [39], Zeng-Gasiński-Winkert-Bai [40], Zeng-Rădulescu-Winkert [41, 42, 43],
Zhao-Zheng [44], see also the references therein.

The paper is organized as follows. In Section 2 we present the underlying function
spaces and some auxiliary results about certain parabolic embeddings as well as
properties of the penalty operator. Section 3 is concerned with the proof of Theorem
1.2 based on surjectivity results for pseudomonotone operators along with a penalty
technique. Finally, in Section 4 we state the notion of sub-supersolutions to (1.1),
give sufficient conditions for the existence of it (see Lemmas 4.3, 4.4) and prove an
existence result for (1.1) for a given ordered pair of sub-supersolutions, see Theorem
4.5.

2. Preliminaries

In this section we introduce the Musielak-Orlicz spaces LH(Ω) and W 1,H(Ω),

W 1,H
0 (Ω) and summarize some of their relevant properties. Further, based on the

Musielak-Orlicz spaces we are going to characterize the space-time function spaces
X, X0, Y , and Y0.

Suppose (H1) and consider the nonlinear function H : Ω× [0,∞) → [0,∞) given
by

H(x, s) = sp + µ(x)sq,

then the Musielak-Orlicz spaces LH(Ω) is defined by

LH(Ω) =

{
u : Ω → R measurable and ρH(u) :=

∫
Ω

H(x, |u|) dx < +∞
}

equipped with the Luxemburg norm

∥u∥H = inf
{
λ > 0 : ρH

(u
λ

)
≤ 1

}
.
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The space LH(Ω) is separable and uniformly convex and thus a reflexive Banach
space. Further let us introduce the weighted space Lq

µ(Ω) defined by

Lq
µ(Ω) =

{
u : Ω → R measurable and

∫
Ω

µ(x)|u|q dx < +∞
}

equipped with the seminorm ∥ · ∥q,µ given by

∥u∥q,µ =

(∫
Ω

µ(x)|u|q dx
) 1

q

.

Denote by Lr(U) the usual Lebesgue spaces equipped with the norm ∥ · ∥r,U , then
one readily verifies the following continuous embeddings to hold true

Lq(Ω) ↪→ LH(Ω) ↪→ Lp(Ω) ∩ Lq
µ(Ω).

The relation between the norm ∥·∥H and the H-modular ρH are summarized in the
following proposition, see Liu-Dai [27, Proposition 2.1] or Crespo-Blanco-Gasiński-
Harjulehto-Winkert [17, Proposition 2.13].

Proposition 2.1. Under hypothesis (H1) the following relations hold true:

(i) ∥u∥H = a ̸= 0 ⇐⇒ ρH

(
u
a

)
= 1;

(ii) ∥u∥H < 1 (resp. ∥u∥H = 1, ∥u∥H > 1) ⇐⇒ ρH(u) < 1 (resp. ρH(u) = 1,
ρH(u) > 1);

(iii) ∥u∥H < 1 =⇒ ∥u∥qH ≤ ρH(u) ≤ ∥u∥pH,
(iv) ∥u∥H > 1 =⇒ ∥u∥pH ≤ ρH(u) ≤ ∥u∥qH;
(v) ∥u∥H → 0 ⇐⇒ ρH(u) → 0, ∥u∥H → +∞ ⇐⇒ ρH(u) → +∞.

The Musielak-Orlicz Sobolev space V :=W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

∥u∥V = ∥u∥H + ∥∇u∥H,

and its subspace V0 := W 1,H
0 (Ω), whose functions have generalized homogeneous

boundary values, is defined as the completion of C∞
c (Ω) with respect to the norm

∥ · ∥V , that is

V0 :=W 1,H
0 (Ω) = C∞

c (Ω)
∥·∥V

.

As LH(Ω) is separable and uniformly convex, the Musielak-Orlicz Sobolev spaces V
and V0 are separable and uniformly convex as well, and thus reflexive. Moreover, the
following proposition holds, see Crespo-Blanco-Gasiński-Harjulehto-Winkert [17,
Propositions 2.16 and 2.18].

Proposition 2.2. Suppose hypothesis (H1) is satisfied.

(i) Continuous embedding: V0 ↪→ Lr(Ω) for all r ∈ [1, p∗] with p∗ = Np
N−p being

the critical Sobolev exponent;
(ii) Compact embedding: V0 ↪→↪→ Lr(Ω) for all r ∈ [1, p∗);
(iii) Equivalent norm in V0: ∥u∥V0

= ∥∇u∥H for all u ∈ V0.
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The double phase operator Au := −div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
gener-

ates a mapping (again denoted by A) from V0 to its dual V ∗
0 defined by

⟨Au,φ⟩ =
∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇φdx (2.1)

for all u, φ ∈ V0, where ⟨·, ·⟩ denotes the duality pairing between V ∗
0 and V0. From

Theorem 3.3 and its proof in Crespo-Blanco-Gasiński-Harjulehto-Winkert [17] we
deduce the following properties of A.

Proposition 2.3. The double phase operator A defined by (2.1) satisfies:

(i) A : V0 → V ∗
0 is continuous, bounded, and strictly monotone;

(ii) A is of type (S+), that is, if un ⇀ u (weakly) in V0 and

lim sup
n→∞

⟨Aun, un − u⟩ ≤ 0,

then un → u (strongly) in V0;
(iii) ∥Au∥V ∗

0
≤ 2∥u∥V0 for all u ∈ V0.

With the notations V :=W 1,H(Ω) and V0 :=W 1,H
0 (Ω) and the properties of the

Musielak-Orlicz Sobolev spaces V and V0, the Lebesgue spaces X = Lp(0, τ ;V ),
X0 = Lp(0, τ ;V0) and Y and Y0 as introduced already in Section 1 are separa-
ble, and uniformly convex, and thus reflexive Banach spaces, see e.g. Zeidler [36,
Proposition 23.2, Proposition 23.7].

For s ∈ R, we set s± = max{±s, 0}. Note that the Musielak-Orlicz Sobolev space
spaces V0 and V have lattice structure and are closed under max and min operators
(see Crespo-Blanco-Gasiński-Harjulehto-Winkert [17, Proposition 2.17]), which im-
plies that the corresponding Lebesgue space X0 and X have lattice structure as
well and are closed under max and min operators.

Lemma 2.4. Assume hypothesis (H1). Then the following assertions hold true:

(i) V0 ↪→ L2(Ω) ↪→ V ∗
0 forms an evolution triple;

(ii) Continuous embedding: Y0 ↪→ C([0, τ ];L2(Ω);
(iii) Let u ∈ Y0, then the following integration by parts formula is valid∫ τ

0

⟨ut(·, t), u(·, t)⟩dt =
1

2

(
∥u(·, τ)∥22,Ω − ∥u(·, 0)∥22,Ω

)
;

(iv) Let u ∈ Y0, then it holds∫ τ

0

⟨ut(·, t), u(·, t)+⟩dt =
1

2

(
∥u(·, τ)+∥22,Ω − ∥u(·, 0)+∥22,Ω

)
.

Proof. (i) V0 is a separable and reflexive (even uniformly convex) Banach space,
which by Proposition 2.2 (ii) is compactly embedded in the Hilbert space L2(Ω),
and moreover V0 is dense in L2(Ω).

(ii) and (iii) are immediate consequences of Proposition 23.23 in Zeidler [36].
(iv) In a similar way as in the proof of Lemma 2.146 in Carl-Le-Motreanu [13]

one obtains this formula by regularization and density arguments. □

Remark 2.5. Clearly, Lemma 2.4 remains true if V0 is replaced by V and Y0 is
replaced by Y .
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Lemma 2.6. Assume hypothesis (H1). Then the following compact embedding
holds

Y0 ↪→↪→ Lp(0, τ ;Lp(Ω)) = Lp(Q).

Proof. Since V0 ↪→↪→ Lp(Ω) and Lp(Ω) ↪→ Lp′
(Ω) ↪→ V ∗

0 (note that p ≥ 2), and
thus V0 ↪→↪→ Lp(Ω) ↪→ V ∗

0 , we may apply the Lions-Aubin Theorem (see e.g. Carl-
Le [12, Theorem 2.52]), which results in Y0 ↪→↪→ Lp(Q). □

By means of the obstacle function ψ we define an operator P through

⟨P (u), φ⟩ =
∫
Q

[
(u− ψ)+

]p−1
φdxdt for all u, φ ∈ X0. (2.2)

Lemma 2.7. The operator P : X0 → X∗
0 is bounded, continuous and monotone,

and satisfies
P (u) = 0 ⇐⇒ u ∈ K, (2.3)

that is, P is a penalty operator associated with K.

Proof. We define the function

g(x, t, s) = [(s− ψ(x, t))+
]p−1

,

which is readily seen to be a Carathéodory function and has the growth

|g(x, t, s)| ≤ (|ψ(x, t)|+ |s|)p−1 ≤ k(x, t) + c|s|p−1

for a.a. (x, t) ∈ Q, for all s ∈ R where k ∈ Lp′
(Q) and c ≥ 0. Furthermore,

s 7→ g(x, t, s) is monotone nondecreasing. Thus the associated Nemytskij op-
erator G(u)(x, t) = g(x, t, u(x, t)) defines a monotone and continuous mapping

G : Lp(Q) → Lp′
(Q). From the continuous embedding V0 ↪→ Lp(Ω) it follows

that i : X0 ↪→ Lp(Q) as well as the adjoint i∗ : Lp′
(Q) ↪→ X∗

0 are continuous too.
Hence

P = i∗ ◦G ◦ i : X0 → X∗
0

is a bounded, continuous and monotone operator. Let us prove (2.3). If u ∈ K,
then (u − ψ)+ = 0 and thus ⟨P (u), φ⟩ = 0 for all φ ∈ X0, that is P (u) = 0.
Conversely, let P (u) = 0, which yields

0 = ⟨P (u), φ⟩ =
∫
Q

[
(u− ψ)+

]p−1
φdxdt for all φ ∈ X0.

In particular also for φ = (u− ψ)+ ∈ X0, which implies∫
Q

[
(u− ψ)+

]p
dxdt = 0.

Therefore (u− ψ)+ = 0, that is, u ∈ K. □

Lemma 2.8. The penalty operator P : X0 → X∗
0 defined by (2.2) fulfills the in-

equality
⟨P (u), (u− ψ)+⟩ ≥ d ∥P (u)∥X∗

0
∥(u− ψ)+∥p,Q

with d > 0.
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Proof. From (2.2) we get

⟨P (u), (u− ψ)+⟩ = ∥(u− ψ)+∥pp,Q. (2.4)

Applying Hölder’s inequality and the continuous embeddingX0 ↪→ Lp(Q) we obtain

|⟨P (u), φ⟩| ≤
∫
Q

[
(u− ψ)+

]p−1|φ|dxdt

≤ ∥(u− ψ)+∥p−1
p,Q ∥φ∥p,Q

≤ c∥(u− ψ)+∥p−1
p,Q ∥φ∥X0 for all φ ∈ X0,

and thus
∥P (u)∥X∗

0
≤ c∥(u− ψ)+∥p−1

p,Q . (2.5)

From (2.4) and (2.5) it follows

⟨P (u), (u− ψ)+⟩ ≥ 1

c
∥P (u)∥X∗

0
∥(u− ψ)+∥p,Q,

which completes the proof. □

Lemma 2.9. Assume (H2). Then for any u ∈ Y0 with u(·, 0) = 0 one has

⟨ut +Au, (u− ψ)+⟩ ≥ 0.

Proof. First note that u − ψ ∈ Y and (u − ψ)+(x, 0) = 0, which by applying the
integration by parts formula (see Lemma 2.4 and Remark 2.5) yields

⟨(u− ψ)t, (u− ψ)+⟩ = 1

2
∥(u− ψ)+(·, τ)∥22,Ω. (2.6)

With (2.6) and taking into account that the double phase operator A is monotone
we get

⟨ut +Au− (ψt +Aψ), (u− ψ)+⟩
= ⟨(u− ψ)t, (u− ψ)+⟩+ ⟨Au−Aψ, (u− ψ)+⟩ ≥ 0,

which by means of (H2) completes the proof. □

3. Proof of Theorem 1.2

Before proving our main result we start with general considerations on an ab-
stract evolution equation. Even though such an evolution equation is treated within
the framework of a general evolution triple V ↪→ H ↪→ V ∗ and the associated
Lebesgue spaces X = Lp(0, τ ;V ) and its dual space X∗ = Lp′

(0, τ ;V ∗) of vector
valued functions, in what follows we already specify to our situation, that is, to the
evolution triple

V0 ↪→ L2(Ω) ↪→ V ∗
0 ,

and the associated Lebesgue spaces X0, X
∗
0 , Y0 introduced in the preceding section.

Let us consider the evolution equation

u ∈ Y0 : u′(t) + T̂ (t)u(t) = f(t), 0 < t < τ, u(0) = 0, (3.1)

where f ∈ X∗
0 and T̂ (t) : V0 → V ∗

0 , and u
′(t)(x) = ut(x, t). Let Lu := u′ = ut be

the time derivative operator with domain

D(L) = {u ∈ Y0 : u(0) = 0}.
Then by using Proposition 32.10 of Zeidler [37] we have the following result.
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Lemma 3.1. The operator L : D(L) → X∗
0 is densely defined, closed and maximal

monotone.

Next, we define the operator T by means of T̂ by

T (u)(t) := T̂ (t)u(t), t ∈ [0, τ ].

Hence the evolution equation (3.1) can equivalently be written in the form

u ∈ D(L) : Lu+ T (u) = f in X∗
0 .

In Berkovits-Mustonen [6] it is proved that certain properties of the operator

T̂ (t) : V0 → V ∗
0 transfer to the operator T : X0 → X∗

0 . To this end let D(L) be
equipped with its graph norm ∥u∥L = ∥u∥X0

+ ∥Lu∥X∗
0
.

Definition 3.2.

(i) T : X0 → X∗
0 is called pseudomonotone with respect to the graph norm topol-

ogy of D(L) (for short: pseudomonotone w.r.t.D(L)), if for any sequence
(un) ⊂ D(L) with un ⇀ u in X0, Lun ⇀ Lu in X∗

0 and

lim sup
n→∞

⟨T (un), un − u⟩ ≤ 0

implies T (un)⇀ T (u) and ⟨T (un), un⟩ → ⟨T (u), u⟩;
(ii) T : X0 → X∗

0 has the (S+)-property w.r.t.D(L), if un ⇀ u in X0, Lun ⇀
Lu in X∗

0 and lim supn→∞⟨T (un), un − u⟩ ≤ 0 implies un → u in X0.

The following theorem can be found in Berkovits-Mustonen [6].

Theorem 3.3.

(i) If T̂ (t) : V0 → V ∗
0 is pseudomonotone for all t ∈ [0, τ ], then T : X0 → X∗

0 is
pseudomonotone w.r.t.D(L);

(ii) If T̂ (t) : V0 → V ∗
0 has the (S+)-property for all t ∈ [0, τ ], then T : X0 → X∗

0

has the (S+)-property w.r.t.D(L);
(iii) If

∥T̂ (t)u∥V ∗
0
≤ c

(
k(t) + ∥u∥p−1

V0

)
, ∀u ∈ V0, ∀t ∈ [0, τ ],

where c > 0, k ∈ Lp′
(0, τ), and t 7→ ⟨T̂ (t)u, v⟩ is measurable on (0, τ) for

all u, v ∈ V0, then T : X0 → X∗
0 is bounded.

The following surjectivity theorem plays an important role in the proof of our
main result, see Berkovits-Mustonen [7] or Lions [25].

Theorem 3.4. Let T : X0 → X∗
0 be bounded, demicontinuous, and pseudomono-

tone w.r.t.D(L). If T is coercive, that is,

1

∥u∥X0

⟨Tu, u⟩ → ∞ as ∥u∥X0 → ∞,

then L+ T : D(L) → X∗
0 is surjective, that is, (L+ T )(D(L)) = X∗

0 .

Using the notations introduced above, the parabolic double phase obstacle prob-
lem (1.1) (resp. (1.2)) can be reformulated as follows: Find u ∈ D(L) ∩ K such
that

⟨ut +Au+ F (u), v − u⟩ ≥ 0 for all v ∈ K.

Now we can give the proof of Theorem 1.2.
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Proof of Theorem 1.2. The proof is based on a penalty approach and is carried out
in several steps.
Step 1: Assumption (H2) implies that the obstacle function ψ is nonnegative,
that is, ψ ≥ 0, which is seen as follows. By (H2), ψ ∈ Y , and nonnegative on the
parabolic boundary of Q, and satisfies

⟨ψt +Aψ,φ⟩ ≥ 0 for all φ ∈ X0 with φ ≥ 0.

Testing the inequality with φ = ψ− ∈ X0 we get

⟨ψt, ψ
−⟩+

∫
Q

(
|∇ψ|p−2∇ψ + µ(x)|∇ψ|q−2∇ψ

)
· ∇ψ− dxdt ≥ 0.

By means of the integration by parts formula and taking the assumption ψ(·, 0) ≥ 0
into account we get

⟨ψt, ψ
−⟩ = ⟨ψt, ψ

+ − ψ⟩ = ⟨ψt, ψ
+⟩ − ⟨ψt, ψ⟩

= ∥ψ(·, τ)+∥22,Ω − ∥ψ(·, 0)+∥22,Ω −
[
∥ψ(·, τ)∥22,Ω − ∥ψ(·, 0)∥22,Ω

]
= ∥ψ(·, τ)+∥22,Ω − ∥ψ(·, τ)∥22,Ω ≤ 0,

which yields ∫
Q

(
|∇ψ|p−2∇ψ + µ(x)|∇ψ|q−2∇ψ

)
· ∇ψ− dxdt ≥ 0.

Thus

−
∫
Q

(
|∇ψ−|p + µ(x)|∇ψ−|q

)
dxdt ≥ 0,

which results in ∇ψ− = 0, and therefore ψ− = 0, that is, ψ ≥ 0.
Step 2: Penalty equations

For ε > 0, we consider the following penalty equation:

u ∈ D(L) : ut +Au+ F (u) +
1

ε
P (u) = 0 in X∗

0 , (3.2)

where

⟨Au, v⟩ =
∫
Q

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
∇v dxdt,

⟨F (u), v⟩ =
∫
Q

f(x, t, u)v dxdt,

⟨P (u), v⟩ =
∫
Q

[
(u− ψ)+

]p−1
v dxdt

with P being the penalty operator. From Proposition 2.3 (i), (iii), we infer that
A : X0 → X∗

0 is bounded, continuous and strictly monotone, which implies that,
A : X0 → X∗

0 , is pseudomonotone in the usual sense (see e.g. Zeidler [37, Propo-
sition 27.6 (a)]), and thus, in particular, pseudomonotone w.r.t.D(L). By (H3),

the Nemytskij operator F : Lp(Q) → Lp′
(Q) is continuous and bounded with the

estimate

|⟨F (u), v⟩| ≤
∫
Q

|f(x, t, u)||v|dxdt

≤
∫
Q

(
α(x, t) + β|u|p−1

)
|v|dxdt
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≤
(
∥α∥p′,Q + β∥u∥p−1

p,Q

)
∥v∥p,Q,

and

∥v∥p,Q =
(∫ τ

0

∫
Ω

|v(x, t)|p dxdt
) 1

p ≤ c
(∫ τ

0

∥v(·, t)∥pV0
dt
) 1

p ≤ c∥v∥X0
,

and thus

|⟨F (u), v⟩| ≤ c
(
∥α∥p′,Q + β∥u∥p−1

p,Q

)
∥v∥X0 . (3.3)

In view of the continuous embeddings

X0 ↪→ Lp(Q) ↪→ Lp′
(Q) ↪→ X∗

0

and taking into account (3.3) we see that F : X0 → X∗
0 is continuous and bounded,

which along with the compact embedding Y0 ↪→↪→ Lp(Q) (see Lemma 2.6) implies
that F : X0 → X∗

0 is pseudomonotone w.r.t.D(L). Taking Lemma 2.7 into account,
the same arguments apply to the penalty operator P : X0 → X∗

0 , which is continu-
ous, bounded and pseudomonotone w.r.t.D(L) as well. Since the sum of operators
that are pseudomonotone w.r.t.D(L) is again pseudomonotone w.r.t.D(L), we have
that T given by

T := A+ F +
1

ε
P : X0 → X∗

0

is bounded, continuous and pseudomonotone w.r.t.D(L). In Step 1 we have seen
that the obstacle function ψ is nonnegative, and thus 0 ∈ K, which implies that
⟨P (u), u⟩ ≥ 0 for all u ∈ X0, and by the coercivity assumption on A+F : X0 → X∗

0

it follows that T : X0 → X∗
0 is coercive for any ε > 0. Applying Theorem 3.4, for

each ε > 0 there exist solutions uε of the penalty equation (3.2). Let (εn) with
εn ↘ 0 and select an associated sequence of penalty solutions (uεn) := (un), that
is,

un ∈ D(L) : unt +Aun + F (un) +
1

εn
P (un) = 0 in X∗

0 . (3.4)

Testing (3.4) with φ = un we get

⟨Aun + F (un), un⟩ = − 1

εn
⟨P (un), un⟩ − ⟨unt, un⟩ ≤ 0.

Hence it follows
1

∥un∥X0

⟨Aun + F (un), un⟩ ≤ 0,

which in view of the coercivity assumption on A + F implies that (∥un∥X0) is
bounded, and therefore, (Aun) and (F (un)) are bounded in X∗

0 . Consider next the
sequence ( 1

εn
P (un)). By Lemma 2.8 we have

⟨P (un), (un − ψ)+⟩ ≥ d ∥P (un)∥X∗
0
∥(un − ψ)+∥p,Q (3.5)

with d > 0. Testing the penalty equation (3.4) with φ = (un − ψ)+ we obtain

⟨unt +Aun, (un − ψ)+⟩+
〈
F (un) +

1

εn
P (un), (un − ψ)+

〉
= 0. (3.6)

With Lemma 2.9 and

|⟨F (un), (un − ψ)+⟩| ≤ c∥(un − ψ)+∥p,Q,
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from (3.5) and (3.6) we obtain

d

εn
∥P (un)∥X∗

0
∥(un − ψ)+∥p,Q ≤ c∥(un − ψ)+∥p,Q.

Hence
1

εn
∥P (un)∥X∗

0
≤ c

d
for all εn, (3.7)

that is, the sequence ( 1
εn
P (un)) is bounded in X∗

0 . From the penalty equation we
have

unt = −
(
Aun + F (un) +

1

εn
P (un)

)
,

which shows that the sequence (unt) is bounded in X∗
0 , which together with the

boundedness of (un) in X0 yields that (un) is bounded in Y0. Hence there exists a
subsequence (again denoted by (un)) such that

un ⇀ u in X0 and unt ⇀ ut in X∗
0 (3.8)

as n→ ∞ and εn ↘ 0. Since D(L) is closed in Y0 and convex, it is weakly closed,
and therefore u ∈ D(L).
Step 3: u is a solution of the obstacle problem.

We are going to show that the weak limit u is in fact a solution of the parabolic
double phase obstacle problem. To this end let us first show that P (u) = 0, and
thus u ∈ K. From (3.7) we see that P (un) → 0 in X∗

0 . Since P : X0 → X∗
0 is

monotone, we get ⟨P (v)−P (un), v−un⟩ ≥ 0 for all v ∈ X0 and for all n, which by
passing to the limit as n→ ∞ yields

⟨P (v), v − u⟩ ≥ 0 for all v ∈ X0.

In particular, the last inequality holds for v = u + δφ for any δ > 0 and φ ∈ X0,
which results in

⟨P (u+ δφ), φ⟩ ≥ 0 for all φ ∈ X0.

Passing to the limit as δ ↘ 0 we get

⟨P (u), φ⟩ ≥ 0 for all φ ∈ X0,

which implies P (u) = 0, that is, u ∈ K.
Testing the penalty equation with φ = un − u and using ⟨unt − ut, un − u⟩ ≥ 0

one gets

⟨Aun, un − u⟩ ≤ −⟨ut, un − u⟩ −
〈
F (un) +

1

εn
P (un), un − u

〉
. (3.9)

With (3.8) and the compact embedding Y0 ↪→↪→ Lp(Q) it follows that un → u in
Lp(Q), which yields by passing to the lim sup in (3.9)

lim sup
n→∞

⟨Aun, un − u⟩ ≤ 0. (3.10)

From Proposition 2.3 (ii) in conjunction with Theorem 3.3 (ii) we conclude that

A : X0 → X∗
0 has the (S+)-property w.r.t.D(L) (note that Â(t) ≡ A). Hence, from

(3.8) and (3.10) it follows that un → u in X0.
Let v ∈ K be arbitrarily given. Testing the penalty equation with φ = v − un

we get

⟨unt, v − un⟩+ ⟨Aun + F (un), v − un⟩ =
1

εn
⟨P (v)− P (un), v − un⟩ ≥ 0
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for all n, which in view of un → u in X0 and unt ⇀ ut and passing to the limit
yields

⟨ut, v − u⟩+ ⟨Au+ F (u), v − u⟩ ≥ 0 for all v ∈ K,

that is, u is a solution of the parabolic double phase obstacle problem. □

Remark 3.5. The coercivity condition (1.4) in Theorem 1.2 is satisfied if either
the coefficient β > 0 in the growth condition (1.3) on f is small enough, or else if
condition (1.3) is replaced by the following one

|f(x, t, s)| ≤ α(x, t) + β|s|r−1 with 1 < r < p, (3.11)

for a.a. (x, t) ∈ Q and for all s ∈ R, where α ∈ Lp′
(Q) and β > 0 an arbitrary

constant. To verify these claims, consider first ⟨Au, u⟩. In view of Proposition 2.1
(iii) and Proposition 2.2 (iii), we have the estimate for ∥u∥V0 large

∥u∥pV0
= ∥∇u∥pH ≤ ρH(∇u) =

∫
Ω

(
|∇u|p + µ(x)|∇u|q

)
dx. (3.12)

With (3.12) we estimate

⟨Au, u⟩ =
∫
Q

(
|∇u|p + µ(x)|∇u|q

)
dxdt

=

∫ τ

0

(∫
Ω

(
|∇u(x, t)|p + µ(x)|∇u(x, t)|q

)
dx

)
dt

=

∫ τ

0

ρH(∇u(·, t)) dt ≥
∫ τ

0

∥u(·, t)∥pV0
dt ≥ ∥u∥pX0

.

With the growth condition (1.3) we get

|⟨F (u), u⟩| ≤ ∥α∥p′,Q∥u∥p,Q + β∥u∥pp,Q,

and thus due to ∥u∥pp,Q ≤ c∥u∥pX0
, one gets

|⟨F (u), u⟩| ≤ ∥α∥p′,Q∥u∥p,Q + cβ∥u∥pX0
.

Hence for ∥u∥X0
large we obtain

1

∥u∥X0

⟨Au+ F (u), u⟩ ≥ ∥u∥p−1
X0

− cβ∥u∥p−1
X0

− c∥α∥p′,Q,

which for β > 0 small such that cβ < 1 implies coercivity.
In case (3.11) is assumed we have the estimate for any ε > 0

|⟨F (u), u⟩| ≤
∫
Q

|f(·, ·, u)||u|dxdt ≤
∫
Q

(
α(x, t) + β|u|r−1

)
|u|dxdt

≤ ∥α∥p′,Q∥u∥p,Q + β

∫
Q

|u|r dxdt

≤ ∥α∥p′,Q∥u∥p,Q + β

∫
Q

(
c(ε) + ε|u|p

)
dxdt

≤ ∥α∥p′,Q∥u∥p,Q + βc(ε)|Q|+ βεc∥u∥pX0
.

By choosing ε small enough such that ε < 1
cβ , we readily see that

1

∥u∥X0

⟨Au+ F (u), u⟩ → ∞ as ∥u∥X0 → ∞,

which shows the coercivity in this case.
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Remark 3.6. In case that neither the coercivity condition (1.4) nor the growth
condition (1.3) is fulfilled, existence results for the obstacle problem (1.1) can be
proved provided sub-supersolutions for the problem exist, which we are going to
introduce in the following section.

4. Sub-supersolution

Let us introduce the notation u ∧ v = min{u, v} and u ∨ v = max{u, v}. The
sub- and supersolutions of the obstacle problem (1.1) (resp. (1.2)) are defined as
follows, see Carl-Le [12, Chap. 5].

Definition 4.1. A function u ∈ Y is called a subsolution of (1.1) if F (u) ∈ Lp′
(Q)

such that the following holds:

(i) u ∨K ⊂ K, u(·, 0) ≤ 0 in Ω;

(ii) ⟨ut +Au, v − u⟩+
∫
Q

F (u) (v − u) dxdt ≥ 0 for all v ∈ u ∧K.

We have a similar definition for supersolutions of (1.1).

Definition 4.2. A function u ∈ Y is called a supersolution of (1.1) if F (u) ∈
Lp′

(Q) such that the following holds:

(i) u ∧K ⊂ K, u(·, 0) ≥ 0 in Ω;

(ii) ⟨ut +Au, v − u⟩+
∫
Q

F (u) (v − u) dxdt ≥ 0 for all v ∈ u ∨K.

The following lemmas provide sufficient conditions for sub- and supersolutions
of the obstacle problem (1.1) (resp. (1.2)).

Lemma 4.3. If u ∈ Y satisfies u(·, 0) ≤ 0 in Ω, u ≤ 0 on Σ, F (u) ∈ Lp′
(Q) and

⟨ut +Au+ F (u), φ⟩ ≤ 0 for all φ ∈ X0 with φ ≥ 0,

then u is a subsolution of the obstacle problem (1.1) in the sense of Definition 4.1
provided u ≤ ψ.

Proof. We recallK = {v ∈ X0 : v ≤ ψ in Q}. Clearly, u fulfills (i) of Definition 4.1.
In order to check (ii), we note that v ∈ u∧K has the representation v = u−(u−φ)+
for any φ ∈ K, which yields

⟨ut +Au, v − u⟩+
∫
Q

F (u)(v − u) dxdt

= −
〈
ut +Au, (u− φ)+

〉
−

∫
Q

F (u)(u− φ)+ dxdt ≥ 0,

since (u− φ)+ ∈ X0 and (u− φ)+ ≥ 0. □

Lemma 4.4. If u ∈ Y satisfies u(·, 0) ≥ 0 in Ω, u ≥ 0 on Σ, F (u) ∈ Lp′
(Q) and

⟨ut +Au+ F (u), φ⟩ ≥ 0 for all φ ∈ X0 with φ ≥ 0,

then u is a supersolution of the obstacle problem (1.1) in the sense of Definition
4.2.
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Proof. Clearly, u satisfies (i) of Definition 4.2. Let us prove (ii) of Definition 4.2.
First, note that v ∈ u ∨K has the representation v = u+ (φ− u)+ for any φ ∈ K.
Hence we get

⟨ut +Au, v − u⟩+
∫
Q

F (u)(v − u) dxdt

= ⟨ut +Au, (φ− u)+⟩+
∫
Q

F (u)(φ− u)+ dxdt ≥ 0,

because (φ− u)+ ∈ X0 and (φ− u)+ ≥ 0. □

By means of an ordered pair of sub-and supersolutions we are going to prove an
existence result for the obstacle problem (1.1) (resp. (1.2)) without requiring the
coercivity assumption (1.4), but instead replacing assumption (H3) by the following
local boundedness on f .

(H4) Assume an ordered pair of sub-and supersolutions u ≤ u of the obstacle
problem (1.1) in the sense of Definitions 4.1 and 4.2. The Carathéodory
function f : Q × R → R is supposed to satisfy the following bound with
respect to the ordered interval [u, u]

|f(x, t, s)| ≤ k(x, t)

for a.a. (x, t) ∈ Q and for all s ∈ [u(x, t), u(x, t)], where k ∈ Lp′
(Q).

Based on the existence of an ordered pair of sub- and supersolution we have the
following result.

Theorem 4.5. Assume hypotheses (H1), (H2) and (H4). Then the parabolic obsta-
cle problem (1.1) (resp. (1.2)) admits at least one solution u ∈ Y0 with u ≤ u ≤ u.

Proof. Consider the cut-off function b : Q× R → R given by

b(x, t, s) =


[s− u(x, t)]p−1 if s > u(x, t)

0 if u(x, t) ≤ s ≤ u(x, t)

−[u(x, t)− s]p−1 if s < u(x, t),

for a.a. (x, t) ∈ Q and for all s ∈ R. Obviously, b is a Carathéodory function and
satisfies the following growth condition

|b(x, t, s)| ≤ c1(x, t) + c2|s|p−1 for a.a. (x, t) ∈ Q, for all s ∈ R,

with c1 ∈ Lp′
(Q) and c2 > 0. Therefore, the Nemytskij operator B : u 7→ b(·, ·, u)

is a continuous and bounded mapping from Lp(Q) to Lp′
(Q) and the composed

operator i∗ ◦B ◦ i : X0 → X∗
0 again denoted by B given by

⟨B(u), v⟩ =
∫
Q

b(·, ·, u) v dxdt for all u, v ∈ X0

is pseudomonotone w.r.t.D(L) due to the compact embedding Y0 ↪→↪→ Lp(Q).
Moreover, there are constants c3, c4 > 0 such that∫

Q

b(·, ·, u)udxdt ≥ c3∥u∥pp,Q − c4 for all u ∈ Lp(Q). (4.1)
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Next, we introduce the cut-off function f0 : Q× R → R defined by

f0(x, t, s) =


f(x, t, u(x, t)) if s < u(x, t),

f(x, t, s) if u(x, t) ≤ s ≤ u(x, t),

f(x, t, u(x, t)) if s > u(x, t),

which is a Carathéodory function that in view of (H4) satisfies the growth condition

|f0(x, t, s)| ≤ k(x, t) for a.a. (x, t) ∈ Q and for all s ∈ R. (4.2)

Thus its Nemytskij operator F0 : L
p(Q) → Lp′

(Q) is bounded and continuous, and
the composed operator i∗ ◦ F0 ◦ i : X0 → X∗

0 given by

⟨F0(u), v⟩ =
∫
Q

f0(·, ·, u) v dxdt for all u, v ∈ X0

is pseudomonotone w.r.t.D(L) due to the compact embedding Y0 ↪→↪→ Lp(Q).

Hence the operator F̂ := B + F0 : X0 → X∗
0 is bounded, continuous and pseu-

domonotone w.r.t.D(L). Consider the auxiliary parabolic obstacle problem: Find
u ∈ D(L) ∩K such that

⟨ut +Au+ F̂ (u), v − u⟩ ≥ 0 for all v ∈ K. (4.3)

By means of (4.1) and (4.2) we get

⟨F̂ (u), u⟩ ≥ c3∥u∥pp,Q − c4 − ∥k∥p′,Q∥u∥p,Q,

which implies that A+ F̂ : X0 → X∗
0 satisfies the coercivity condition

1

∥u∥X0

⟨Au+ F̂ (u), u⟩ → ∞ as ∥u∥X0
→ ∞.

Thus, by applying Theorem 1.2 with F replaced by F̂ , there exist solutions of the
auxiliary obstacle problem (4.3). Therefore, the proof of Theorem 4.5 is complete
provided any solution u of the auxiliary obstacle problem (4.3) satisfies u ≤ u ≤ u,

because then B(u) = 0 and F̂ (u) = F (u).
Let us verify that u ≤ u. Since u ∈ K, it follows that

u+ (u− u)+ = u ∨ u ∈ K.

Using v = u+ (u− u)+ in (4.3), one obtains〈
ut, (u− u)+

〉
+
〈
Au+B(u) + F0(u), (u− u)+

〉
≥ 0. (4.4)

As u is a subsolution we get with v = u ∧ u ∈ u ∧ K in Definition 4.1 (ii) the
following inequality

−
〈
ut +Au, (u− u)+

〉
−

∫
Q

F (u)(u− u)+ dxdt ≥ 0. (4.5)

where we have used that u ∧ u = u− (u− u)+. Adding inequalities (4.4) and (4.5)
results in 〈

B(u), (u− u)+
〉
+

∫
Q

(
F0(u)− F (u)

)
(u− u)+ dxdt

≥
〈
ut − ut, (u− u)+

〉
+

〈
Au−Au, (u− u)+

〉
.

(4.6)
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The right-hand side of (4.6) is nonnegative, and by the definition of f0 it follows
that ∫

Q

(
F0(u)− F (u)

)
(u− u)+ dxdt = 0.

Thus we obtain from (4.6) and taking into account the definition of b

0 ≤ ⟨B(u), (u− u)+⟩ = −
∫
Q

[(u− u)+]p dxdt ≤ 0,

which implies (u− u)+ = 0, that is, u ≤ u. The inequality u ≤ u can be proved in
a similar way, which completes the proof of the theorem. □
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Paris; Gauthier-Villars, Paris, 1969.

[26] J.-L. Lions, G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967),

493–519.
[27] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differential

Equations 265 (2018), no. 9, 4311–4334.

[28] W. Meng, C. Zhang, Asymptotic mean value properties for the elliptic and parabolic double
phase equations, NoDEA Nonlinear Differential Equations Appl. 30 (2023), no. 6, Paper No.

77, 21 pp.
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