ON THE FUCIK SPECTRUM OF THE p-LAPLACIAN WITH
NO-FLUX BOUNDARY CONDITION

GIUSEPPINA D’AGUI, ANGELA SCIAMMETTA, AND PATRICK WINKERT

ABSTRACT. In this paper, we study the quasilinear elliptic problem
—Apu:a(qu)p_l —b(uf)p_1 in Q,

u = constant on 012,
0= / |VuP~2 Vu - vdo,
1519]

where the operator is the p-Laplacian and the boundary condition is of type
no-flux. In particular, we consider the Fu¢ik spectrum of the p-Laplacian with
no-flux boundary condition which is defined as the set II,, of all pairs (a, b) € R?
such that the problem above has a nontrivial solution. It turns out that this
spectrum has a first nontrivial curve C being Lipschitz continuous, decreasing
and with a certain asymptotic behavior. Since (A2, A2) lies on this curve C,
with A2 being the second eigenvalue of the corresponding no-flux eigenvalue
problem for the p-Laplacian, we get a variational characterization of A2. This
paper extends corresponding works for Dirichlet, Neumann, Steklov and Robin
problems.

1. INTRODUCTION

In this paper, we are interested in the so-called Fué¢ik spectrum of the p-Laplacian
with no-flux boundary condition which is defined as the set II,, of all pairs (a, b) € R?
such that the problem

—Apu=a (u+)p_1 —b (u_)p_1 in Q,
u = constant on 01}, (1.1)

0= / VulP > Vu-vdo
o0

has a nontrivial weak solution, where @ C RN, N > 2. is a bounded domain with
smooth boundary 02, Ayu = div(|Vu|p_2 Vu) is the p-Laplace differential operator
with 1 < p < 400, v(z) denotes the outer unit normal of Q at the point x € 99
and vt = max{4u, 0} are the positive and negative parts of u, respectively. The
boundary condition is of type no-flux and such problems have their origin in plasma
physics. Temam [25] studied the problem of the equilibrium of a plasma in a cavity
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which occurred for the first time in Mercier [20] and has the form
Lu = —Abu in Q,,
Lu=0 in Q, = Q —Q, (the vacuum),
u=0 onI'y = 00,
d—u is continuous on I'
g, 18 continuou nl,, (1.2)

u = constant =+ on I' (v unknown),

I:/ Lduap
r, xldl/

u does not vanish in €2,

where I > 0 is given, u, A and ), are the unknowns, while A plays the role of
an eigenvalue of the self-adjoint operator £. The solution of (1.2) determines the
shape at equilibrium of a confined plasma. A simplified model of (1.2) has been

presented by the same author in [26] given by
—Au=—-\u" in Q,
u = constant =y on 0%,

, (1.3)

I:/ — do.
anl/

In (1.3) the region u < 0 is the region filled by the plasma and the region u > 0
corresponds to the vacuum. These regions can be found when we solve problem
(1.3). The region u = 0 corresponds to the free boundary which separates the
plasma and the vacuum. For other models of type (1.3) we refer to the works of
Berestycki-Brézis [3], Gourgeon-Mossino [15], Kinderlehrer-Spruck[16], Puel [23],
Schaeffer [24], Zou [28, 29] and the references therein. A nice overview about no-
flux problems also in the case of variable exponent problems can be found in the
book chapter of Boureanu [4].

In (1.1) we assume that I = 0 and so it corresponds to nonresonant surfaces
called no-flux surfaces on which the wave number of the perturbation parallel to
the equilibrium magnetic field is zero, see Afrouzi-Mirzapour- Radulescu [1]. Note
that when N = 1 and Q = (a,b), problem (1.1) becomes the periodic boundary
value problem

= (W]P7*u) = AulP"u in (a,b),
u(a) = u(b),
u'(a) = u'(b).

In this paper, we are interested in the nontrivial parts of II, and we show that
there exists a first nontrivial curve C C 1I,, which turns out to be Lipschitz contin-
uous, decreasing and with a certain asymptotic behavior. With this work we close
the gap in the literature where the Fucik spectrum of the p-Laplacian has been
already studied for Dirichlet, Neumann, Steklov and Robin boundary condition,

respectively.
The idea of considering the set ¥ of all pairs (a,b) € R? such that

Tu=au™ —bu~



ON THE FUCIK SPECTRUM OF THE p-LAPLACIAN 3

has a nontrivial solution with T" being self-adjoint, goes back to Fucik [12] (see also
Dancer [9]) who recognized that the set ¥ plays an important role in the study of
semilinear equations of type

Tu = f(x,u),

where f:  x R — R is a Carathéodory function with jumping nonlinearities satis-
fying
f(z,s) [z, s)

S —a ass— +oo, T—)b as s — —oo.

Indeed, a systematic study of this spectrum for the one-dimensional Laplacian with
periodic boundary condition has been done by Fuéik [13] who proved that this spec-
trum is composed of two families of curves in R? emanating from the points (Ag, Ax)
determined by the eigenvalues A,. After this, several works on this spectrum have
been published for the negative Laplacian with Dirichlet boundary condition on
bounded domains. In particular, Dancer [9] showed that the lines R x {\;} and
{A1} x R are isolated in X, where 35 is the Fuéik spectrum of —A with Dirichlet
condition and A; > 0 is the first eigenvalue of —A. A starting work on the Fuéik
spectrum of the p-Laplacian with Dirichlet condition has been done by Cuesta-de
Figueiredo-Gossez [8] who proved the existence of a first nontrivial curve in this
spectrum, see also a similar result for —A by de Figueiredo-Gossez [10]. These
results have been transferred to Neumann, Steklov and Robin boundary conditions
by Arias-Campos-Gossez [2], Martinez-Rossi [19] and Motreanu-Winkert [21], re-
spectively. We refer to the book chapter of Motreanu-Winkert [22] concerning the
differences in these works.

In our work, we are going to transfer the techniques of [2], [8], [19] and [21] to
our problem (1.1) with no-flux boundary condition. One difference is that in our
problem the first eigenvalue of the corresponding eigenvalue problem is zero. Indeed,
if a=0b =\, problem (1.1) becomes the following no-flux eigenvalue problem for
the p-Laplacian

—Apu = NulP~2u in €,
= Q
u = constant on 0f), (1.4)
0= / VulP "% Vu - vdo,
o0

which has been treated by Lé [17]. Since the first eigenvalue A in (1.4) is zero,
all nonzero constants are corresponding eigenfunctions. Thus, )A; is simple. Fur-
thermore, from Lé [17] we know that A; is isolated, the spectrum of (1.4) is closed
and each eigenfunction corresponding to an eigenvalue A > 0 changes sign in €.
The first eigenfunction can be given as LP-normalized constant by ¢; = —+. As

-
1|7

a consequence of our results, we obtain a variational characterization of the second

eigenvalue Ay of (1.4) by

A2 = inf  max [/ [Vul? dx} ,
yeluen[-1,1] [ /o
where
L={yeC([-1,1],8) : v(=1) = —p1, (1) = 1},
S={ueV : |ull, =1},
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V ={ueW"(Q) : u|so= constant} .

It turns out that the point (A2, A2) lies on the first nontrivial curve C of II,, see
Figure 1.

(A1, A1)

FIGURE 1. The curve C

Finally, we mention some existence results for elliptic problems with no-flux
boundary condition. As we already noted, there are only few works in this direction.
We refer to Le-Schmitt [18] for a sub-supersolution approach involving general
nonhomogeneous operators, Zhao-Zhao-Xie [27] for a mountain-pass solution, Fan-
Deng [11] for an application on a variational principle due to Ricceri in variable
exponent Sobolev spaces and Boureanu-Udrea [5, 6] for isotropic and anisotropic
variable exponent problems. Other references can be found in the book chapter of
Boureanu [4].

The paper is organized as follows. In Section 2 we present some results on the
function spaces, the p-Laplacian and state the weak formulation of problem (1.1).
Moreover, we recall the mountain-pass theorem for manifolds. In Section 3 we
describe the Fuéik spectrum II,, via critical points of the corresponding functional
and show the existence of a curve of elements of 1I,,. In Section 4 we prove that
this curve is indeed the first nontrivial curve in II,. As a consequence we derive
a variational characterization of the second eigenvalue Ay of (1.4), see Corollary
4.4. Finally, in Section 5, we prove that this first nontrivial curve is Lipschitz
continuous, decreasing and converging in the cases p < N and p > N separately,
see Proposition 5.1 and Theorems 5.2 and 5.4.

2. PRELIMINARIES

In this section we recall some facts about the function space, the operator and
tools from critical point theory. To this end, let Q be a bounded domain in RY,
N > 2, with smooth boundary 99 and let 1 < p < co. We denote by LP(Q) :=
LP(Q;R) and LP(Q;RY) the usual Lebesgue spaces endowed with the norm || - |,
while W1P(Q) stands for the Sobolev space endowed with the norm |- ||; ,, namely,

1p = (/ [VulP dz —|—/ |ul? dx) " foralluc wWhP(Q).
) Q

[l
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Let
V={ueW"(Q) : ulso= constant} .

Then V is a closed subspace of W1?(£2) and so a reflexive Banach space with norm
Il - Il1,p, see Le-Schmitt [18] or Zhao-Zhao-Xie [27, Lemma 2.1]. Note that for any
v € V we have that vT,v~ € V.

A function u € V is said to be a weak solution of (1.1) if

/Q VulP ™ Vu - Vode = /Qa ((u+)p_1 —b (u_)p_l) vdw (2.1)

is satisfied for all v € V.
For 1 < p < oo, we consider the nonlinear operator A: V' — V* defined by

(A(u),v) :== /Q |VulP~2Vu - Vo da (2.2)

for w,v € V with (-, -) being the duality pairing between V and its dual space V*.
The properties of the operator A: V — V* can be summarized as follows, see, for
example, Carl-Le-Motreanu [7, Lemma 2.111].

Proposition 2.1. The operator A defined by (2.2) is bounded, continuous, mono-
tone (hence mazximal monotone) and of type (S4), that is,

up = u inV and limsup{Au,,u, —u) <0,
n—oo

imply w, = u inV.

Let X be a reflexive Banach space, let X* be its dual space and let p € C1(X,R).
We say that {u, }nen C X is a Palais-Smale sequence ((PS)-sequence for short) for
@ if {¢©(un)}neny C R is bounded and

O (up) =0 in X* asn — oo.

We say that ¢ satisfies the Palais-Smale condition ((PS)-condition for short) if any
(PS)-sequence {uy, }nen of ¢ admits a convergent subsequence in X.

The following version of the mountain-pass theorem in the sense of manifolds
will be used in the sequel. We refer to Ghoussoub [14, Theorem 3.2].

Theorem 2.2. Let X be a Banach space and let g, f € C*(X,R). Further, suppose
that 0 is a reqular value of g and let M = {u € X : g(u) = 0}, ug, v € M and
€ > 0 such that ||ui — uo| x > € and

inf {f(u) : we M and Ju—uolly ==} > max {f(uo), f(u1)}
Assume that f satisfies the (PS)-condition on M and that

F={y€C (1,1, M) : 5(~1) = up and (1) = u;}
is nonempty. Then

i R

is a critical value of f|,, .
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3. THE FUCIK SPECTRUM THROUGH CRITICAL POINTS

In this section, we are going to determine the elements of the Fuéik spectrum
IT, through critical points.

Let s € R be a real nonnegative parameter and consider the functional J,: V —
R defined by

Jo(u) = /Q |Vul? dz — S/Q (u™)” da. (3.1)

It is clear that J, € C* (V,R). Recall that

Sz{ueV:I(u):/Qmpdx:l}.

We know that S is a smooth submanifold of V and so, J, = J,
in the sense of manifolds.

Applying the Lagrange multiplier rule, we note that u € § is a critical point of J,
(in the sense of manifolds) if and only if there exists ¢t € R such that J.(u) = tI'(u),
that is

|s is a Cl-function

/ [Vu|P % Vu - Vods — S/ (u+)p_1 vder = t/ |ul[P~%uv da (3.2)
Q ) Q

forallveV. ~
First, we investigate the relationship between the critical points of Js and the
Fucik spectrum IL,.

Lemma 3.1. Let s be a nonnegative real parameter. The point (s + t,t) € R?
belongs to the spectrum 11, if and only if there exists a critical point u € S of J,
such that t = Jg(u).

Proof. From the definition of a weak solution of (1.1), see (2.1), we observe that
(t + s,t) € II,, if and only if there exists v € S that solves the following no-flux
problem

—Apu = (t+s) (u*)%1 —t (u’)pil in Q,

u = constant on 0f),
0= / V|’ Vu - vdo.
o0

However, the corresponding weak solution of the problem above is given in (3.2).
Taking v = u in (3.2) we have that ¢t = J,(u) and the proof is complete. O

Lemma 3.1 allows us to find points in II,, by the critical points of J,. Next we
are going to look for minimizers of J;.
Proposition 3.2. There hold:

(i) the first eigenfunction 1 = is a global minimizer of Jy;

T
2] »

(ii) the point (0,—s) € R? belongs to I1,,.

Proof. (i) Since s > 0 we have for u € S

Ju(u) = /Q IVl do - S/Q () da > —S/Q ()P de > —s = Ju(p1)
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1

for all uw € S. Hence, the first eigenfunction ¢; = —+
Q|rp

€ V is a global minimizer of
Js.
(ii) From (i) and Lemma 3.1 we get the assertion. O
Now we obtain a second critical point of j s as local minimizer.
Proposition 3.3. There hold:

(i) the negative eigenfunction —p; = — is a strict local minimizer of Jy;

(ii) the point (s,0) € R? belongs to I1,,.

Proof. (i) Suppose by contradiction that there exists a sequence {u, }neny C S with
Uy # —P1, Uy — —p1 in V and
Js(un) <0 =X\ = Js(—¢1). (3.3)
We claim that w, changes sign for n sufficiently large. Observe that, since
Uy — —@1, U, must be < 0 somewhere. Suppose that u,, <0 for a.a.z € Q). Then
we obtain

Js(un):/Q|Vun|p dz > 0=\,

since u, # —¢1 and u, # ¢ contradicting J, (un) <0 = Ay. Therefore, u,, changes
sign. We set

U
[l

Claim: r,, - +00 as n — +0o0

Arguing by contradiction, suppose {r, }neny C R is bounded. Then from (3.4) we
know that {wy, }nen is bounded in V. Hence we find a subsequence (still denoted
by {wy}nen) such that w, — w in LP(§) for some w € X. Since [lwy[, = 1 and
wy, > 0 for a.a.z € Q, we see that |lw|[, =1 and w > 0. Therefore, the Lebesgue
measure of the set {z € Q : u,(z) > 0} does not approach 0 when n — +oc.
However, this contradicts the assumption that w, — —p; in LP(Q)) which means
that {x € Q : u,(z) > 0} — 0. This proves the Claim.

From (3.3) and (3.4) we get that

>

Wy =

and 1, = [[Vw,|, . (3.4)

p

Js(un):/ |Vu,f|p d:ch/ |Vu;‘p dxfs/ (uh) da
Q Q Q
> (rp —s)/ (uz)p dz.

Q

Hence, 0 > 7, — s which contradicts the Claim. This completes the proof of (i).
(ii) This follows from Lemma 3.1 since Js(—¢1) = 0. O

Using the two local minima from Proposition 3.2 and 3.3 we are looking for
a third critical point of J, by using the mountain-pass theorem in its version on
C'-manifolds.

First, we define a norm of the derivative of the restriction js of Js to S at the
point u € S by

with T'(-) = || -[|? and || - ||, being the norm in the dual space V* of V.

j;(u)“* = min { ||7(u) — tT"(u)], : t € R}



8 G.D’AGUI, A.SCIAMMETTA, AND P. WINKERT

Lemma 3.4. The functional J: S — R satisfies the (PS)-condition on S in the
sense of manifolds.

Proof. Let {un}neny C S be a (PS)-sequence, that is, {js(un)}neN is bounded and
7. (un)]|« — 0 as n — oo. Then we find a sequence {t, }nen C R such that

/|Vun|p72Vun.Vvdx—s/ (u:)pflvdm—tn/|un|p_2unvdx
Q Q Q

<éenlolly,,

(3.5)

for all v € V with ¢, — 0.

Since {un }nen C S we have Jy(up,) > |[Vuy|[, — s and because {J(up)}nen € R
is bounded, we know that {u,}nen is bounded in V. So we may assume, for a
subsequence if necessary, that

U, —=u inV and wu, —u in LP(Q).
We choose v = u,, in (3.5) and note again that {u, }neny C S. Hence, the sequence
{tn}tnen C R is bounded. Taking v = u,, — u in (3.5) we obtain that
/ VP Vi, - V(u, — u)dz
@ (3.6)
= s/ (ui)pil (up, —u)dz +t, / |t [P~ %, (uy, — ) dz + O(ey,),
Q Q
where the right-hand side of (3.6) goes to zero as n — co. Hence, we have

/ Vtn P72 Vg - V(up —u)dz — 0 as n — oc.
Q

From the (S4)-property of —A,, (see Proposition 2.1), we conclude that u,, — u in
V. Thus, J; fulfills the (PS)-condition. O

Now we prove the existence of a third critical point of J; which is different from
w1 and —pg.
Proposition 3.5.
(i) Let
L={yeC([-1,1,5) : v(-1) = —p1, 7(1) = ¢1 }.
For each s > 0 we have that

=: inf J 3.7
c(s) inf | max s(u) (3.7)

is a critical value of Js such that ¢(s) > max{Js(—¢1), Js(¢1)} = 0.
(ii) The point (s+ c(s),c(s)) belongs to II,,.

Proof. (i) First note that —¢; is a strict local minimizer of .J, with J, (—¢;) = 0 by
Proposition 3.3 and ¢ is a global minimizer of J, with J, (¢1) = —s by Proposition
3.2. Similar to the proof of Lemma 2.9 in Cuesta-de Figueiredo-Gossez [3] we can
show by using Ekeland’s variational principle that

inf {js(u) ru€Sand [lu—(—p1)l,, = 8} > max{J,(—p1), Js(1)} = A1,
with small € > 0. We choose £ > 0 small enough such that
2|[erlly = ller = (=)l > &
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Moreover, from Lemma 3.4 we know that J,: S — R satisfies the (PS)-condition
on the manifold S. Therefore, we can apply the mountain-pass theorem, stated as
Theorem 2.2, which guarantees that c(s) introduced in (3.7) is a critical value of
J, with ¢(s) > 0. Hence, we have a third critical point different from —p; and ¢;.

(ii) Using the fact that ¢(s) given in (3.7) is a critical value of .J, in combination
with Lemma 3.1 shows that (s + ¢(s), c(s)) € IL,. O

4. THE FIRST NONTRIVIAL CURVE

In Proposition 3.5 (ii) we have shown that the point (s + ¢(s),¢(s)) belongs to
IL, for s > 0. Since II, is symmetric with respect to the diagonal, we can complete
it with its symmetric part and obtain the following curve in II,

C={(s+c(s),c(s)), (c(s), s+ c(s)) : s > 0}. (4.1)

In this section, we are going to prove that the curve C is the first nontrivial curve
in IT,. We start by showing that the lines {0} x R and R x {0} are isolated in II,,.

Proposition 4.1. There is no sequence {ay, by nen € II, with a, > 0 and b, >0
such that {an, by }neny — {a,b} witha =0 orb=0.

Proof. We argue by contradiction and suppose there exist sequences {a, b, }nen C
IT, and {uy}nen €V with a,, = 0, by, — b, a, >0, b, >0, ||un|\p =1 and

—Apun = an (ui)pfl — by, (u;)pil in Q,
u, = constant on 0, (4.2)
0= / Vtn P72 Vu, - vdo.
o0

The weak formulation of (4.2) is given by

/ Vun|? % Vu, - Vodz = an/ (uj{)p_l vdz — bn/ (u;)p_l vda (4.3)
Q Q Q

for all v € V.. We first test (4.3) with v = u,, and obtain
IV, |} = an / (uj)pil Up dx — by, / (u;)pil Uy, da
Q Q

:an/ (u,)" d$+bn/ (u,; )" dz < ap + by.
Q Q

Hence, {un nen is bounded in V. We may assume, for a subsequence if necessary,
that

up, =u inV and w, > u in LP(Q).

Testing (4.3) with v = u,, — u gives
/ ‘vun|p—2 Vuy, - V(u, —u)de
Q
= an/ (UI)pi1 (Up, —u)de — bn/ (u;)pil (up, — u) dz.
Q2 Q

This implies

lim / VP2 Vg, - V(u, —u) dz = 0.
Q

n—-+o0o



10 G. D’AGUL A.SCIAMMETTA, AND P. WINKERT

From the (S4)-property of —A,, (see Proposition 2.1), we conclude that u,, — u in
V. Hence, u solves the equation

/ IVulP > Vu - Vods = —b/ (uf)pilvdz, (4.4)
Q Q

for all v € V. If we take v = ut in (4.4), we see that

/ |Vut|” dz = 0.
Q

This means that either ut = 0 or u™ = ¢ since ||ul|, = 1.

Let us first suppose that u™ = 0. Then u < 0 and from (4.3) we know that u
is an eigenfunction of the p-Laplacian with no-flux boundary condition, see (1.4).
Therefore, u = —¢; since the only eigenfunctions that have constant sign are those
related to A\; = 0. We conclude that {u,}nen converges either to ¢ or to —p; in
LP(Q). This implies that either

{xeQ: uy(z) <0} =0 or [{x€Q: u,(z)>0}—0, (4.5)

respectively, with |-| being the Lebesgue measure.
Taking v = u,} as test function in (4.3) along with Holder’s inequality and the
continuous embedding V' — L"(Q) for any r € (p,p*] with embedding constant

C > 0 we get
/ |Vu,f|p der/ (u:{)p dx
Q Q

:an/ﬂ(ug)f’ dx+/ﬂ(u;)p da
:(an+1)/ﬂ(u;)” Az

. 1-24 +|P
< (an +1)C? {zx € Q : uy(z) > 0} unHLp.
From this we conclude that
{z e : up(z) >0} "7 > (an+1)"'C7 (4.6)

Similarly, if we use v = u,, in (4.3) we obtain
{z et un(z) <O} " > (bo+1)"'CP. (4.7)

Because {an, by tnen C II, does not belong to the trivial lines of II,, we have that
u, changes sign. Hence, from (4.6) and (4.7) we reach a contradiction to (4.5).
This completes the proof. [

Before we state the main result in this section, we need the following lemma.

Lemma 4.2. For every r > infg Js = —s, each connected component of {u € S :
Js(u) < r} contains a critical point which is a local minimizer of Js.

Proof. Let C' be a connected component of {u € S : Js(u) < r} and let d =
inf{Js(u) : ueC}. )
Claim: There exists ug € C such that Js (up) = d.

Let {up}neny € C be a sequence such that Jg(u,) < d+ % From Ekeland’s
variational principle applied to Js on C we get a sequence {v, }nen C C such that

js(vn) < js(un), (4.8)
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llun — vn”l,p <

for all v € C.
From (4.8) and n sufficiently large we have that

- ~ 1
Js(vn) < Js(up) < d—+ 2 <

Moreover, applying (4.10), we are able to show that {v,},en is a (PS)-sequence
for J;. Then by Lemma 3.4 and (4.9) we conclude, for a subsequence if necessary,
that u, — ug in V with ug € C and js(uo) = d. Finally, note that ug € dC' since
otherwise the maximality of C' as a connected component would be contradicted.
Thus, ug is a local minimizer of Jj. (]

The next results show that C is the first nontrivial curve in II,,.

Theorem 4.3. Let s > 0. Then (s + c(s),c(s)) € C is the first nontrivial point of
I1, in the intersection between I, and the line (s,0) 4+ t(1,1) with ¢ > 0.

Proof. We are going to show the assertion by contradiction. Let 0 < u < ¢(s) and
suppose that (s + p, ) € II,. Taking Proposition 4.1 and the closedness of II,
into account, we may suppose that g is the minimum number with the required
property. By using Lemma 3.1 it is clear that u is a critical value of the functional
J, and there is no critical value of J, in the interval (0, ).

Let u € S be a critical point of J, at level u. We have for all v € V

/ [VulP > Vu - Vode = (s + ,u)/ (u+)p_1 vde — u/ (u_)p_l vdaz,
Q Q Q
see Lemma 3.1. Choosing v = u™ gives
/ |Vu+’p dr = (s + ,u)/ (u™)’ da. (4.11)
Q Q

Similarly, if we take v = —u™~ we obtain

/ |Vu_|p dz = u/ (u_)p dz. (4.12)
Q Q
Using (4.11) and (4.12) we see that

. + . —u-
Js(t)zjs( : ):u,
e, T,
~ u-
Js =p—s. 4.13)
<||u|p> (

Now, we introduce for all ¢ € [0, 1] the following paths defined by

and

() = (1 —t)u+tut
A ToRs e
us(t) = (-

[tut + (1 = tu~]],’
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—tu” + (1 -t)u
[—tu= + (1 —t)ull,’

uz(t) =

Note that these paths are well- deﬁned in S. It is easy to see that uy(t) goes from

u to ﬁ, us(t) goes from Huﬂ\ to e T and ug(t) goes from u to
P
By means of (4.11) and (4. 12) it is easy to see that

Jo(ur () = p = Jo(us(t)),

Ts(uz(t)) = p— st?

Tu T,

=iy

ltut + (1 —t)u

e <up
I,

for all ¢t € [0,1].
From this we know that we can move from u to ﬁ via uq(t) and wus(t) which

lies at level u — s, so we stay at level < p. Let us investigate the levels below p — s.
We introduce

T={ves: J(v)<u—s}

We observe that ¢1 € T and —p1 € T if u > s. Due to the minimality property
of u, we know that 1 and —¢ are the only possible critical points of Js in Y. Since

W does not change sign and vanishes on a set of positive measure, it cannot

be a crltlcal point of Js. Hence, we find a path B: [—¢,¢] — S of class C! with
B8(0) = T 8 and 4 J (B(t))|t=0 # 0. Using this path and (4.13) we can move from

to a point v by a path in S such that Js (v) < pw — s. In particular, we have

Hu H
v E T
Applying Lemma 4.2 we obtain that the connected component of T containing
v crosses {1, —p1}. Let us suppose that we can continue from v to ¢, the case
continuing to —¢; can be argued similarly. Therefore, there exists a path u4(t) in
to —1. As

T from to @1, whose symmetric path —uy(t) goes from —

_u _u
w1, lu=1l,

uyq(t) € S, we have that
To(—ua(t)) < Jo(ua(t)) +s <p—s+s=p,

since for each @ € S it holds

Jo(0) — Jo(—10)| < s.

We already observed that we go from —¢; to via —uy(t) by staying at

—u
Tu=T,
level lower then p. Finally from the path us(t) we go from u to ﬁ by staying
at level p. '

In summary, we have shown that we constructed a path joining u and ¢; via
up(t), ug(t) as well as uy(t) and we have a path joining w and —p; via uz(t)
and —u4(t). Putting these paths together we have a path y(t) on S joining ¢4
and —¢; with J,(y(t)) < p. In particular we have that J, has a critical value p
with Ay < p < ¢(s), but there is no critical value in the interval JA\;, u[ and this
contradicts the definition of ¢(s) in (3.7). O

A direct consequence of Theorem 4.3 is a variational characterization of the
second eigenvalue Ao of problem (1.4).
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Corollary 4.4. The second eigenvalue Ao of (1.4) has the following variational
characterization

yel uey[—1,1]

A2 = inf max [/ [Vul? dx} .
Q

Proof. We apply Theorem 4.3, Proposition 3.5 (i) and (3.1) for s = 0 in order to
get

¢(0) = inf max Jo(u) = inf max [/ [Vul” dx} .
Q

YET uey[-1,1] YET uey[-1,1]

5. PROPERTIES OF THE FIRST CURVE

In this section, we are going to prove some properties of the curve C defined in
(4.1) and we study its asymptotic behavior.

Proposition 5.1. The curve s — (s + ¢(s),c(s)) is Lipschitz continuous with
Lipschitz constant L < 1 and decreasing.

Proof. Let s; and sy be such that s; < so. Then we have J, (u) > J,,(u) for all
u € S and so ¢(s1) > c(s2).
For every € > 0 we find a path v € T" such that

max J, (u) < c(sy) +e,
uey[—1,1]

This implies

0<e(s1) —c(s2) < max Je (u) — max Js,(u) +e.
u€y[—1,1] u€y[-1,1]

Let Ug € ’}/[—1, ].} be such that
js = js s
u Hl[aX) ] 1 (u) 1 (uo)

from which we conclude that
0 < ¢(s1) — c(s2) < Js, (o) — Js, (ug) + € = 51 — 59 + €.

As e > 0 was arbitrary, we obtain that the curve s — (s + ¢(s),c(s)) is Lipschitz
continuous with Lipschitz constant L < 1.

Let us prove that the curve is decreasing. To this end, let 0 < s7 < s3. Theorem
4.3 implies that s1+c(s1) < sa+c(s2) since (s1+c(s1), ¢(s1)), (s2+c(s2), c(s2)) € II,,.
From the first part of the proof, we already mentioned that ¢(s1) > ¢(s2). This
completes the proof. O

Next, we study the asymptotic behavior of the curve C. Since ¢(s) is decreasing
and positive, there exists limg o ¢(s). As it was done in [2], [19] and [21], we
distinguish between the two cases p < N and p > N. We define for 1 < p < oo

A(N,p) = inf {/ |[VulP dz : w € S and u changes sign in Q}
Q
and for p > N

A =inf {/ |[Vu|P dz : w € S and u vanishes somewhere in Q} . (5.1)
Q
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Since W, ?(Q) is compactly embedded in C°(Q) when p > N, the definition (5.1)
makes sense and the infimum is achieved. So, A > 0. Morecover, we sce that
A(N,p) = X when p > N and (N, p) = 0 when p < N, see Arias-Campos-Gossez
[2]. Note that the sequences defined in [2, Remark 2.7] can be also used in our
setting.

We start with the case p < N.

Theorem 5.2. Let p < N. Then
lim ¢(s) =0.

s—+o0
Proof. Arguing by contradiction we assume that there exists € > 0 such that

max J,(u) > ¢ (5.2)
u€y[—1,1]

for all v € T and for all s > 0. Since p < N, we can choose a function ¢ € V which
is unbounded from above. Consider the path v € I" defined by

o — Lot 0=t
[epr + (L= 12D,

for t € [~1,1]. The maximum of J, on v[—1, 1] is achieved at t, € [—1, 1], that is

e Is (7(1)) = Js (7(ts))

Taking v, = ts1 + (1 — |ts|)¢ we obtain from (5.2) that

Js (vs) > € HUs||§7

/ |Vog|” dz — s/ (v’ dz > e/ |vs [P da. (5.3)
Q Q 0

If we let s — +00, we may assume that t, — ¢ € [-1,1] (for a subsequence if
necessary). Since vy is bounded in V', from (5.3) we have that

that is

/ (vj)p dx — 0 ass— +oo,
Q

from which we conclude that
o1 + (1 —|t))o < 0.

Since ¢ is unbounded from above, this is only possible for £ = —1. Then taking
t = —1 and passing to the limit in (5.3) we get

0:/ |V |” dx2€/|<p1|pdm.
Q Q

This implies € < 0 and so we have a contradiction. O

Let II,, be the nontrivial part of II,, that is, I, = II, \ {(0 x R) U (R x 0)}.
Theorem 5.2 implies the following corollary.

Corollary 5.3. Let p < N. Then there does not exist € > 0 such that ﬁp 18
contained in the set {(a,b) € R? : a and b > £}.

Let us now study the case p > N.
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Theorem 5.4. Let p > N. Then
lim ¢(s) =A>0, (5.4)

s——+o0
where X is defined in (5.1).
Proof. By contradiction we suppose that there exists € > 0 such that

max Jo(u) > X +¢ (5.5)
uey[—1,1]

for all v € T and for all s > 0. Let u be a minimizer of (5.1) and consider the path
~v € T defined by
tpr + (1 = [t)u
[t + (1 = [¢])ull,
for t € [-1,1]. The path is well defined because u vanishes somewhere, but ¢; does

not and it belongs to I'.
As in the proof of Theorem 5.2, for every s > 0, we fix t5 € [—1,1] such that

max J (y(t)) = Js (7(ts)) .

u€y[—1,1]

v(t) =

Denoting vs = tsp1 + (1 — [ts])u, from (5.5) it follows
js (vs) > (XJF 5) ”7’5”2,
that is,

/ [Vog|” dx—s/(vj)pdx > (X—l—s)/ |vs [P dz. (5.6)
Q Q Q

Letting s — +o00, we can assume, for a subsequence, t; — ¢ € [—1,1]. The uniform
boundedness of v, implies [, (v )?dz — 0 due to (5.6). Since vy — v; in V, we
have vtfr =0in Q, then

tp; < —(1—|t)u in Q. (5.7)
o>

Since u vanishes somewhere in Q and ¢ = 0, from (5.7) we obtain that

T
|2»

t < 0. Passing to the limit in (5.6) we obtain
/ IV (Fior + (1 — [i)w)[” de > (R4 <) / lir + (1 — [il)ul? da.
Q Q
Since Vi1 = 0 and due to (¢ + d)P > ¢ + dP for ¢, d > 0, we arrive at

(1- |£|)”/Q|vu|1’ dr > (X+s)/ﬂ|£<p1+<1— i) ul? dz

> (o) [l [ eaos @1y [ jupas). o

If £ = —1, (5.8) becomes

0> (X+s)/gofdx,
Q

Thus, A + ¢ < 0 which is a contradiction.
If ¢ €] — 1,0], since u is a minimizer of (5.1), (5.8) becomes

(L=’ X> (N +e) (1—E])°.
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So, € <0, a contradiction. This shows (5.4). O

As a consequence of Theorem 5.4, we have the following result.

Proposition 5.5. Let p > N. Then II, is contained in the open set {(a,b) €
R? : a and b > )L}’ where A is the largest number such that this inclusion holds. In
particular, Ao > .

First, we prove the following lemma.

Lemma 5.6. Letp > N and let u be a minimizerﬁf (5.1). Then u does not change
sign in  and u vanishes at exactly one point in §Q.

Proof. Let u be a minimizer of (5.1), let xo € Q and let
Vio ={v eV 1 v(zg) =0}.

We are going to show that, if u vanishes at xg, then
/ |VulP~2Vu - Vodz = X/ |ulP~%uv da (5.9)
for all v € V,,. We haie that "
)\:inf{/ |[VolP dz - veSandvGVmo}
and the infimum is achieved a‘? u. The Lagrange multiplier rule implies that
/Q VulP " Vu - Vode = )\/Q |ulP~2uw da (5.10)

for all v € V,, and for some A € R. If we take v = u in (5.10), we obtain that A = A
and so (5.9) is true.

Let us now assume that « vanishes in at least two points 1,z € Q. The function
w = |u| is also a minimizer in (5.1) which vanishes at 1 and xs, that is, w fulfills
(5.9) for all v € V,,, and also for all v € V,,. Note that any v € V can be written
as v = v1 + ve with v; € V,, and vy € V,,. Therefore, w satisfies (5.9) for all
v € V. If we then choose v =1 in (5.9), we see that w > 0 changes sign which is a
contradiction.

Finally, we want to show that the minimizer v does not change sign. Let u™ # 0
with u(zg) = 0. This implies u™ (z¢) = 0. Taking v = u™ in (5.9) we see that ﬁ
is a minimizer in (5.1). Hence, due to the first part of the proof, u* vanishes only
at o and so u > 0. O

Now we can prove Proposition 5.5.

Proof of Proposition 5.5. Let (a,b) € 1:Ip and let u # 0 be a corresponding solution
of (1.1). Choosing v =1 as test function in (2.1) we obtain that

/Q (a (u+)p71 - b(uf)pfl) dz = 0.

Hence, u changes sign in Q. Note that u™ and u~ both vanish somewhere since u
changes sign. Testing (2.1) with v = u™ and v = v~ we get that

/|Vu+\pdac /|Vu_|pdx
a=72 > X  and b=22  >7% (5.11)
/|u+|pdx
Q
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Next, we want to show that a,b > . Let us assume that @ = X\. Then we see
from (5.11) that ﬁ is a minimizer in (5.1). Since u changes sign, u* vanishes
in many points (at least in more than one point) which contradicts Lemma 5.6.
Hence a > X\ and in the same way we can show that b > X. Therefore, c(s) > A and
from Theorem 5.4 we know that lim,_, o c(s) = \.

Proposition 3.5 (i) implies that (s + ¢(s),¢(s)) € I, C TI, and in particular,
(¢(0),¢(0)) = (A2, A9) € T,. Since ¢(s) > A from the first part of the proof, it
follows that A < \y. O
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