ON THE FUČIK SPECTRUM FOR THE *p*-LAPLACIAN WITH ROBIN BOUNDARY CONDITION

DUMITRU MOTREANU AND PATRICK WINKERT

ABSTRACT. The aim of this paper is to study the Fučik spectrum of the p-Laplacian with Robin boundary condition given by

$$\begin{split} &-\Delta_p u = a(u^+)^{p-1} - b(u^-)^{p-1} & \text{ in } \Omega, \\ &|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = -\beta |u|^{p-2} u & \text{ on } \partial\Omega, \end{split}$$

where $\beta \geq 0$. If $\beta = 0$, it reduces to the Fučik spectrum of the negative Neumann *p*-Laplacian. The existence of a first nontrivial curve C of this spectrum is shown and we prove some properties of this curve, e.g., C is Lipschitz continuous, decreasing and has a certain asymptotic behavior. A variational characterization of the second eigenvalue λ_2 of the Robin eigenvalue problem involving the *p*-Laplacian is also obtained.

1. INTRODUCTION

The Fučik spectrum of the negative *p*-Laplacian with a Robin boundary condition is defined as the set $\widehat{\Sigma}_p$ of $(a, b) \in \mathbb{R}^2$ such that

$$-\Delta_p u = a(u^+)^{p-1} - b(u^-)^{p-1} \qquad \text{in } \Omega,$$

$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = -\beta |u|^{p-2} u \qquad \text{on } \partial\Omega,$$

(1.1)

has a nontrivial solution. Here the domain $\Omega \subset \mathbb{R}^N$ is supposed to be bounded with a smooth boundary $\partial\Omega$. The notation $-\Delta_p u$ stands for the negative *p*-Laplacian of u, i.e., $-\Delta_p u = -\operatorname{div}(|\nabla u|^{p-2}\nabla u)$, with $1 , while <math>\frac{\partial u}{\partial \nu}$ denotes the outer normal derivative of u and β is a parameter belonging to $[0, +\infty)$. We also denote $u^{\pm} = \max\{\pm u, 0\}$. For $\beta = 0$, (1.1) becomes the Fučik spectrum of the negative Neumann *p*-Laplacian. Let us recall that $u \in W^{1,p}(\Omega)$ is a (weak) solution of (1.1) if

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx + \beta \int_{\partial \Omega} |u|^{p-2} uv \, d\sigma = \int_{\Omega} (a(u^+)^{p-1} - b(u^-)^{p-1}) v \, dx,$$
(1.2)

for all $v \in W^{1,p}(\Omega)$. If $a = b = \lambda$, problem (1.1) reduces to

$$-\Delta_p u = \lambda |u|^{p-2} u \qquad \text{in } \Omega,$$

$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = -\beta |u|^{p-2} u \qquad \text{on } \partial\Omega,$$

(1.3)

²⁰¹⁰ Mathematics Subject Classification. 35J92, 35J20, 47J10.

Key words and phrases. p-Laplacian, Robin boundary conditions, Fučik spectrum.

which is known as the Robin eigenvalue problem for the *p*-Laplacian. As proved in [13], the first eigenvalue λ_1 of problem (1.3) is simple, isolated and can be characterized as follows

$$\lambda_1 = \inf_{u \in W^{1,p}(\Omega)} \left\{ \int_{\Omega} |\nabla u|^p dx + \beta \int_{\partial \Omega} |u|^p d\sigma : \int_{\Omega} |u|^p dx = 1 \right\}$$

It is also known that the eigenfunctions corresponding to λ_1 are of constant sign and belong to $C^{1,\alpha}(\overline{\Omega})$ for some $0 < \alpha < 1$. Throughout this paper, φ_1 denotes the eigenfunction of (1.3) associated to λ_1 which is normalized as $\|\varphi_1\|_{L^p(\Omega)} = 1$ and satisfies $\varphi_1 > 0$. Let us also recall that every eigenfunction of (1.3) corresponding to an eigenvalue $\lambda > \lambda_1$ must change sign.

We briefly describe the context of the Fučik spectrum related to problem (1.1). The Fučik spectrum was introduced by Fučik [11] in the case of the negative Laplacian in one dimension with periodic boundary conditions. He proved that this spectrum is composed of two families of curves emanating from the points (λ_k, λ_k) determined by the eigenvalues λ_k of the problem. Afterwards, many authors studied the Fučik spectrum Σ_2 for the negative Laplacian with Dirichlet boundary conditions (see [2, 4, 7, 14, 15, 18, 19, 24, 25] and the references therein). In this respect, we mention that Dancer [6] proved that the lines $\mathbb{R} \times \{\lambda_1\}$ and $\{\lambda_1\} \times \mathbb{R}$ are isolated in Σ_2 . De Figueiredo-Gossez [8] constructed a first nontrivial curve in Σ_2 through (λ_2, λ_2) and characterized it variationally. For $p \neq 2$ and in one dimension, Drábek [10] has shown that Σ_p has similar properties as in the linear case, i.e., p = 2. The Fučik spectrum Σ_p of the negative p-Laplacian with homogeneous Dirichlet boundary conditions in the general case $1 and <math>N \geq 1$, that is

$$(a,b) \in \Sigma_p: \qquad \begin{aligned} -\Delta_p u &= a(u^+)^{p-1} - b(u^-)^{p-1} & \text{in } \Omega, \\ u &= 0 & \text{on } \partial\Omega, \end{aligned}$$

has been studied by Cuesta-de Figueiredo-Gossez [5], where the authors proved the existence of a first nontrivial curve through (λ_2, λ_2) and that the lines $\mathbb{R} \times \{\lambda_1\}$ and $\{\lambda_1\} \times \mathbb{R}$ are isolated in Σ_p . For other results on Σ_p we refer to [20, 21, 22, 23].

The Fučik spectrum Θ_p of the negative *p*-Laplacian with homogeneous Neumann boundary condition, that is

$$(a,b) \in \Theta_p: \qquad \begin{aligned} -\Delta_p u &= a(u^+)^{p-1} - b(u^-)^{p-1} & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} &= 0 & \text{on } \partial\Omega, \end{aligned}$$

was investigated in [1, 3, 17]. It is worth emphasizing that Arias-Campos-Gossez [3] pointed out an important difference between the cases $p \leq N$ and p > Nregarding the asymptotic properties of the first nontrivial curve in Θ_p . Note that the Fučik spectrum Θ_p is incorporated in problem (1.1) by taking $\beta = 0$. Finally, we mention the work of Martínez and Rossi [16] who considered the Fučik spectrum $\widetilde{\Sigma}_p$ associated to Steklov boundary condition, which is introduced by

$$(a,b) \in \widetilde{\Sigma}_p: \qquad -\Delta_p u = -|u|^{p-2}u \qquad \text{in } \Omega,$$
$$(a,b) \in \widetilde{\Sigma}_p: \qquad |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = a(u^+)^{p-1} - b(u^-)^{p-1} \qquad \text{on } \partial\Omega.$$

As in the previous situations, they constructed a first nontrivial curve in $\hat{\Sigma}_p$ through (λ_2, λ_2) , where λ_2 denotes the second eigenvalue of the Steklov eigenvalue problem, and studied its asymptotic behavior.

The aim of this paper is the study of the Fučik spectrum $\hat{\Sigma}_p$ given in (1.1) for the negative *p*-Laplacian with Robin boundary condition. We are going to prove the existence of a first nontrivial curve \mathcal{C} of this spectrum and show that it shares the same properties as in the cases of the other problems discussed above: Lipschitz continuity, strictly decreasing monotonicity and asymptotic behavior. It is a significant fact that the presence of the parameter β in problem (1.1) does not alter these basic properties. The main idea in studying the asymptotic behavior of the curve \mathcal{C} is the use of a suitable equivalent norm related to β . A relevant consequence of the construction of the first nontrivial curve \mathcal{C} in $\hat{\Sigma}_p$ is the following variational characterization of the second eigenvalue λ_2 of (1.3):

$$\lambda_2 = \inf_{\gamma \in \Gamma} \max_{u \in \gamma[-1,1]} \left[\int_{\Omega} |\nabla u|^p dx + \beta \int_{\partial \Omega} |u|^p d\sigma \right], \tag{1.4}$$

where

$$\Gamma = \{ \gamma \in C([-1,1],S) : \gamma(-1) = -\varphi_1, \ \gamma(1) = \varphi_1 \},\$$

with

$$S = \left\{ u \in W^{1,p}(\Omega) : \int_{\Omega} |u|^p dx = 1 \right\}.$$
(1.5)

The results presented in this paper complete the picture of the Fučik spectrum involving the *p*-Laplacian by adding in the case of Robin condition the information previously known for Dirichlet problem (see [5]), Steklov problem (see [16]), and homogeneous Neumann problem (see [3]). Actually, as already specified, the results given here for the Fučik spectrum (1.1) of the negative *p*-Laplacian with Robin boundary condition extend the ones known for the Fučik spectrum Θ_p under Neumann boundary condition by simply making $\beta = 0$.

Our approach is variational relying on the functional associated to problem (1.1), which is expressed on $W^{1,p}(\Omega)$ by

$$J(u) = \int_{\Omega} |\nabla u|^p dx + \beta \int_{\partial \Omega} |u|^p d\sigma - \int_{\Omega} (a(u^+)^p + b(u^-)^p) dx.$$

It is clear that $J \in C^1(W^{1,p}(\Omega), \mathbb{R})$ and the critical points of J coincide with the weak solutions of problem (1.1). In comparison with the corresponding functionals related to the Fučik spectrum for the Dirichlet and Steklov problems, the functional J exhibits an essential difference because its expression does not contain the norm of the space $W^{1,p}(\Omega)$, and it is also different from the functional used to treat the Neumann problem because it contains the additional boundary term involving β . However, in our proofs various ideas and techniques are worked out on the pattern of [3], [5], [16].

The rest of the paper is organized as follows. Section 2 is devoted to the determination of elements of $\hat{\Sigma}_p$ by means of critical points of a suitable functional. Section 3 sets forth the construction of the first nontrivial curve C in $\hat{\Sigma}_p$ and the variational characterization of the second eigenvalue λ_2 for (1.3). Section 4 presents the basic properties of C.

2. The spectrum $\widehat{\Sigma}_p$ through critical points

The aim of this section is to determine elements of the Fučik spectrum $\widehat{\Sigma}_p$ defined in problem (1.1). They are found by critical points of a functional that is

constructed by means of the Robin problem (1.1). To this end we follow certain ideas in [5] and [16] developed for problems with Dirichlet and Steklov boundary conditions.

For a fixed $s \in \mathbb{R}$, $s \ge 0$, and corresponding to $\beta \ge 0$ given in problem (1.1), we introduce the functional $J_s: W^{1,p}(\Omega) \to \mathbb{R}$ by

$$J_s(u) = \int_{\Omega} |\nabla u|^p dx + \beta \int_{\partial \Omega} |u|^p d\sigma - s \int_{\Omega} (u^+)^p dx,$$

thus $J_s \in C^1(W^{1,p}(\Omega), \mathbb{R})$. The set S introduced in (1.5) is a smooth submanifold of $W^{1,p}(\Omega)$, and thus $\widetilde{J}_s = J_s|_S$ is a C^1 function in the sense of manifolds. We note that $u \in S$ is a critical point of \widetilde{J}_s (in the sense of manifolds) if and only if there exists $t \in \mathbb{R}$ such that

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx + \beta \int_{\partial \Omega} |u|^{p-2} uv \, d\sigma - s \int_{\Omega} (u^+)^{p-1} v \, dx$$

= $t \int_{\Omega} |u|^{p-2} uv \, dx, \quad \forall v \in W^{1,p}(\Omega).$ (2.1)

Now we describe the relationship between the critical points of \widetilde{J}_s and the spectrum $\widehat{\Sigma}_p$.

Lemma 2.1. Given a number s, one has that $(s + J_s(u), J_s(u)) \in \mathbb{R}^2$ belongs to the spectrum $\widehat{\Sigma}_p$ if and only if there exists a critical point $u \in S$ of \widetilde{J}_s such that $t = J_s(u)$.

Proof. The definition in (1.2) for the weak solution shows that $(t+s,t) \in \widehat{\Sigma}_p$ if and only if there is $u \in S$ that solves the Robin problem

$$-\Delta_p u = (t+s)(u^+)^{p-1} - t(u^-)^{p-1} \qquad \text{in } \Omega,$$
$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = -\beta |u|^{p-2} u \qquad \text{on } \partial\Omega,$$

which means exactly (2.1). Inserting v = u in (2.1) yields $t = J_s(u)$, as required. \Box

Lemma 2.1 enables us to find points in $\widehat{\Sigma}_p$ through the critical points of J_s . In order to implement this, first we look for minimizers of \widetilde{J}_s .

Proposition 2.2. There hold:

- (i) the first eigenfunction φ_1 is a global minimizer of \widetilde{J}_s ;
- (ii) the point $(\lambda_1, \lambda_1 s) \in \mathbb{R}^2$ belongs to $\widehat{\Sigma}_p$.

Proof. (i) Since $\beta, s \ge 0$, using the characterization of λ_1 we have

$$\widetilde{J}_{s}(u) = \int_{\Omega} |\nabla u|^{p} dx + \beta \int_{\partial \Omega} |u|^{p} d\sigma - s \int_{\Omega} (u^{+})^{p} dx$$
$$\geq \lambda_{1} \int_{\Omega} |u|^{p} dx - s \int_{\Omega} (u^{+})^{p} dx \geq \lambda_{1} - s = J_{s}(\varphi_{1}), \quad \forall u \in S.$$

(ii) On the basis of (i), we can apply Lemma 2.1.

Next we produce a second critical point of \widetilde{J}_s as a local minimizer.

Proposition 2.3. There hold:

- (i) the negative eigenfunction $-\varphi_1$ is a strict local minimizer of J_s ;
- (ii) the point $(\lambda_1 + s, \lambda_1) \in \mathbb{R}^2$ belongs to $\widehat{\Sigma}_p$.

Proof. (i) Arguing indirectly, let us suppose that there exists a sequence $(u_n) \subset S$ with $u_n \neq -\varphi_1, u_n \to -\varphi_1$ in $W^{1,p}(\Omega)$ and $\widetilde{J}_s(u_n) \leq \lambda_1 = \widetilde{J}_s(-\varphi_1)$. If $u_n \leq 0$ for a.a. $x \in \Omega$, we obtain

$$\widetilde{J}_s(u_n) = \int_{\Omega} |\nabla u_n|^p dx + \beta \int_{\partial \Omega} |u_n|^p d\sigma > \lambda_1,$$

because $u_n \neq -\varphi_1$ and $u_n \neq \varphi_1$, which contradicts the assumption $J_s(u_n) \leq \lambda_1$. Consider now the complementary situation. Hence u_n changes sign whenever n is sufficiently large, thereby we can set

$$w_n = \frac{u_n^+}{\|u_n^+\|_{L^p(\Omega)}} \text{ and } r_n = \|\nabla w_n\|_{L^p(\Omega)}^p + \beta \|w_n\|_{L^p(\partial\Omega)}^p.$$
(2.2)

We claim that, along a relabeled subsequence, $r_n \to +\infty$ as $n \to \infty$. Suppose by contradiction that (r_n) is bounded. This implies through (2.2) that (w_n) is bounded in $W^{1,p}(\Omega)$, so there exists a subsequence denoted again by (w_n) such that $w_n \to w$ in $L^p(\Omega)$, for some $w \in W^{1,p}(\Omega)$. Since $||w_n||_{L^p(\Omega)} = 1$ and $w_n \ge 0$ a.e., we get $||w||_{L^p(\Omega)} = 1$ and $w \ge 0$. This contradicts the assumption that $u_n \to -\varphi_1$ in $L^p(\Omega)$, thus proving the claim.

On the other hand, from (2.2) and by using the variational characterization of λ_1 , we infer that

$$\widetilde{J}_{s}(u_{n}) = (r_{n} - s) \int_{\Omega} |u_{n}^{+}|^{p} dx + \int_{\Omega} |\nabla u_{n}^{-}|^{p} dx + \beta \int_{\partial \Omega} |u_{n}^{-}|^{p} d\sigma$$
$$\geq (r_{n} - s) \int_{\Omega} |u_{n}^{+}|^{p} dx + \lambda_{1} \int_{\Omega} (u_{n}^{-})^{p} dx,$$

whereas the choice of (u_n) gives

$$\widetilde{J}_s(u_n) \le \lambda_1 = \lambda_1 \int_{\Omega} (u_n^+)^p dx + \lambda_1 \int_{\Omega} (u_n^-)^p dx$$

Combining the inequalities above results in

$$(\lambda_1 - r_n + s) \int_{\Omega} (u_n^+)^p dx \ge 0,$$

therefore $\lambda_1 \geq r_n - s$. This is against the unboundedness of (r_n) , which completes the proof of (i). Part (ii) follows from Lemma 2.1 because $J_s(-\varphi_1) = \lambda_1$.

Using the two local minima obtained in Propositions 2.2 and 2.3, we seek for a third critical point of \tilde{J}_s via a version of the Mountain-Pass Theorem on C^1 -manifolds (see, e.g., [12, Theorem 3.2]). First, we check the Palais-Smale condition for \tilde{J}_s on the manifold S.

Lemma 2.4. The functional $\widetilde{J}_s : S \to \mathbb{R}$ satisfies the Palais-Smale condition on S in the sense of manifolds.

Proof. Let $(u_n) \subset S$ be a sequence provided $(J_s(u_n))$ is bounded and $\|\tilde{J}'_s(u_n)\|_* \to 0$ as $n \to \infty$, which means that there exists a sequence $(t_n) \subset \mathbb{R}$ such that

$$\left| \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla v \, dx + \beta \int_{\partial \Omega} |u_n|^{p-2} u_n v \, d\sigma - s \int_{\Omega} (u_n^+)^{p-1} v \, dx - t_n \int_{\Omega} |u_n|^{p-2} u_n v \, dx \right| \le \varepsilon_n \|v\|_{W^{1,p}(\Omega)},$$

$$(2.3)$$

for all $v \in W^{1,p}(\Omega)$ and with $\varepsilon_n \to 0^+$. Note that $J_s(u_n) \geq \|\nabla u_n\|_{L^p(\Omega)}^p - s$. Since $(u_n) \in S$ and $(J_s(u_n))$ is bounded, we derive that (u_n) is bounded in $W^{1,p}(\Omega)$. Thus, along a relabeled subsequence we may suppose that $u_n \rightharpoonup u$ in $W^{1,p}(\Omega)$, $u_n \to u$ in $L^p(\Omega)$ and $u_n \to u$ in $L^p(\partial\Omega)$. Taking $v = u_n$ in (2.3) and using again $(u_n) \subset S$ shows that the sequence (t_n) is bounded. Then, if we choose $v = u_n - u$, it follows that

$$\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla (u_n - u) dx \to 0 \text{ as } n \to \infty.$$

At this point, the $(S)_+$ -property of $-\Delta_p$ on $W^{1,p}(\Omega)$ enables us to conclude that $u_n \to u$ in $W^{1,p}(\Omega)$.

Now we obtain, in addition to φ_1 and $-\varphi_1$, a third critical point of \widetilde{J}_s on S.

Proposition 2.5. There hold:

(i)

$$c(s) := \inf_{\gamma \in \Gamma} \max_{u \in \gamma[-1,1]} J_s(u), \qquad (2.4)$$

where

$$\Gamma = \{\gamma \in C([-1,1],S) : \gamma(-1) = -\varphi_1 \text{ and } \gamma(1) = \varphi_1\}$$

is a critical value of \widetilde{J}_s satisfying $c(s) > \max\{\widetilde{J}_s(-\varphi_1), \widetilde{J}_s(\varphi_1)\} = \lambda_1$. In particular, there exists a critical point of \widetilde{J}_s that is different from $-\varphi_1$ and φ_1 .

(ii) The point (s + c(s), c(s)) belongs to $\widehat{\Sigma}_p$.

Proof. (i) By Proposition 2.3 we know that $-\varphi_1$ is a strict local minimizer of \tilde{J}_s with $\tilde{J}_s(-\varphi_1) = \lambda_1$, while Proposition 2.2 ensures that φ_1 is a global minimizer of \tilde{J}_s with $\tilde{J}_s(\varphi_1) = \lambda_1 - s$. Then we can show that

$$\inf\{\widetilde{J}_s(u): u \in S \text{ and } \|u - (-\varphi_1)\|_{W^{1,p}(\Omega)} = \varepsilon\} > \max\{\widetilde{J}_s(-\varphi_1), \widetilde{J}_s(\varphi_1)\} = \lambda_1,$$

whenever $\varepsilon > 0$ is sufficiently small. The proof that the inequality above is strict can be done as in [5, Lemma 2.9] on the basis of Ekeland's variational principle. In order to fulfill the mountain-pass geometry we choose $\varepsilon > 0$ even smaller if necessary to have $2\|\varphi_1\|_{W^{1,p}(\Omega)} = \|\varphi_1 - (-\varphi_1)\|_{W^{1,p}(\Omega)} > \varepsilon$. Since $\tilde{J}_s : S \to \mathbb{R}$ satisfies the Palais-Smale condition on the manifold S as shown in Lemma 2.4, we may invoke the version of Mountain-Pass Theorem on manifolds (see, e.g., [12, Theorem 3.2]). This guarantees that c(s) introduced in (2.4) is a critical value of \tilde{J}_s with $c(s) > \lambda_1$, providing a critical point different from $-\varphi_1$ and φ_1 .

(*ii*) Thanks to Lemma 2.1 and part (*i*), we infer that $(s + c(s), c(s)) \in \widehat{\Sigma}_p$. \Box

3. The first nontrivial curve

The results in Section 2 permit to determine the beginning of the spectrum $\widehat{\Sigma}_p$. We start by establishing that the lines $\{\lambda_1\} \times \mathbb{R}$ and $\mathbb{R} \times \{\lambda_1\}$ are isolated in $\widehat{\Sigma}_p$. This is known from [5, Proposition 3.4] for Dirichlet problems and from [16, Proposition 3.1] for Steklov problems.

Proposition 3.1. There exists no sequence $(a_n, b_n) \in \widehat{\Sigma}_p$ with $a_n > \lambda_1$ and $b_n > \lambda_1$ such that $(a_n, b_n) \to (a, b)$ with $a = \lambda_1$ or $b = \lambda_1$.

Proof. Proceeding indirectly, assume there exist sequences $(a_n, b_n) \in \hat{\Sigma}_p$ and $(u_n) \subset W^{1,p}(\Omega)$ with the properties: $a_n \to \lambda_1, b_n \to b, a_n > \lambda_1, b_n > \lambda_1, \|u_n\|_{L^p(\Omega)} = 1$ and

$$-\Delta_p u_n = a_n (u_n^+)^{p-1} - b_n (u_n^-)^{p-1} \qquad \text{in } \Omega,$$

$$|\nabla u_n|^{p-2} \frac{\partial u_n}{\partial \nu} = -\beta |u_n|^{p-2} u_n \qquad \text{on } \partial\Omega.$$
(3.1)

If we test (3.1) with $v = u_n$ (see (1.2)), we get

$$\|\nabla u_n\|_{L^p(\Omega)}^p = a_n \int_{\Omega} (u_n^+)^p \, dx + b_n \int_{\Omega} (u_n^-)^p \, dx - \beta \int_{\partial\Omega} |u_n|^p \, d\sigma \le a_n + b_n,$$

which proves the boundedness of (u_n) in $W^{1,p}(\Omega)$. Hence, along a subsequence, $u_n \rightharpoonup u$ in $W^{1,p}(\Omega)$ and $u_n \rightarrow u$ in $L^p(\Omega)$ and $L^p(\partial\Omega)$. Now, testing (3.1) with $\varphi = u_n - u$, we infer that

$$\lim_{n \to \infty} \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \cdot \nabla (u_n - u) \, dx = 0.$$

The $(S)_+$ -property of $-\Delta_p$ on $W^{1,p}(\Omega)$ yields that $u_n \to u$ in $W^{1,p}(\Omega)$. Thus, u is a solution of the equation

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx$$

$$= \lambda_1 \int_{\Omega} (u^+)^{p-1} v \, dx - b \int_{\Omega} (u^-)^{p-1} v \, dx - \beta \int_{\partial\Omega} |u|^{p-2} uv \, d\sigma,$$
(3.2)

for all $v \in W^{1,p}(\Omega)$. Inserting $v = u^+$ in (3.2) leads to

$$\int_{\Omega} |\nabla u^+|^p \, dx = \lambda_1 \int_{\Omega} (u^+)^p \, dx - \beta \int_{\partial \Omega} (u^+)^p \, d\sigma.$$

This, in conjunction with the characterization of λ_1 in Section 1 and since $||u||_{L^p(\Omega)} = 1$, ensures that either $u^+ = 0$ or $u^+ = \varphi_1$. If $u^+ = 0$, then $u \leq 0$ and (3.2) implies that u is an eigenfunction. Recalling that λ_1 is the only eigenfunction that does not change sign, we deduce that $u = -\varphi_1$ (see [13] and also Proposition 4.1). This renders that (u_n) converges either to φ_1 or to $-\varphi_1$ in $L^p(\Omega)$, which forces to have

either
$$|\{x \in \Omega : u_n(x) < 0\}| \to 0$$
 or $|\{x \in \Omega : u_n > 0\}| \to 0,$ (3.3)

respectively, where $|\cdot|$ denotes the Lebesgue measure. Indeed, assuming for instance $u_n \to \varphi_1$ in $L^p(\Omega)$, since for any compact subset $K \subset \Omega$ there holds

$$\int_{\{u_n<0\}\cap K} |u_n-\varphi_1|^p \, dx \ge \int_{\{u_n<0\}\cap K} \varphi_1^p \, dx \ge C|\{u_n<0\}\cap K|,$$

with a constant C > 0, it is seen that the first assertion in (3.3) is fulfilled.

On the other hand, using $v = u_n^+$ as test function for (3.1) in conjunction with the Hölder inequality and the continuity of the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$, with $p < q \leq p^*$, we obtain the estimate

$$\int_{\Omega} |\nabla u_n^+|^p dx + \int_{\Omega} (u_n^+)^p dx = a_n \int_{\Omega} (u_n^+)^p dx - \beta \int_{\partial \Omega} (u_n^+)^p d\sigma + \int_{\Omega} (u_n^+)^p dx$$

$$\leq (a_n + 1) \int_{\Omega} (u_n^+)^p dx$$

$$\leq (a_n + 1)C |\{x \in \Omega : u_n(x) > 0\}|^{1-\frac{p}{q}} ||u_n^+||_{W^{1,p}(\Omega)}^p,$$

with a constant C > 0. We infer that

$$|\{x \in \Omega : u_n(x) > 0\}|^{1 - \frac{p}{q}} \ge (a_n + 1)^{-1} C^{-1}.$$

and in the same way,

$$|\{x \in \Omega : u_n(x) < 0\}|^{1-\frac{p}{q}} \ge (b_n + 1)^{-1}C^{-1}.$$

Since (a_n, b_n) does not belong to the trivial lines of $\widehat{\Sigma}_p$, we have that u_n changes sign. Hence we reach a contradiction with (3.3), which completes the proof. \Box

The following auxiliary fact is helpful to link with the results established in Section 2.

Lemma 3.2. For every $r > \inf_S J_s = \lambda_1 - s$, each connected component of $\{u \in S : J_s(u) < r\}$ contains a critical point, in fact a local minimizer of \widetilde{J}_s .

Proof. Let C be a connected component of $\{u \in S : J_s(u) < r\}$ and denote $d = \inf\{J_s(u) : u \in \overline{C}\}$. We claim that there exists $u_0 \in \overline{C}$ such that $\widetilde{J}_s(u_0) = d$. To this end, let $(u_n) \subset \overline{C}$ be a sequence such that $\widetilde{J}_s(u_n) \leq d + \frac{1}{n^2}$. Applying Ekeland's variational principle to \widetilde{J}_s on \overline{C} provides a sequence $(v_n) \subset \overline{C}$ such that

$$\widetilde{J}_s(v_n) \le \widetilde{J}_s(u_n),$$
(3.4)

$$\|u_n - v_n\|_{W^{1,p}(\Omega)} \le \frac{1}{n},\tag{3.5}$$

$$\widetilde{J}_{s}(v_{n}) \leq \widetilde{J}_{s}(v) + \frac{1}{n} \|v - v_{n}\|_{W^{1,p}(\Omega)}, \quad \forall v \in \overline{C}.$$
(3.6)

If n is sufficiently large, by (3.4) we obtain

$$\widetilde{J}_s(v_n) \le \widetilde{J}_s(u_n) \le d + \frac{1}{n^2} < r.$$

Moreover, owing to (3.6), it can be shown that (v_n) is a Palais-Smale sequence for \widetilde{J}_s . Then Lemma 2.4 and (3.5) ensure that, up to a relabeled subsequence, $u_n \to u_0$ in $W^{1,p}(\Omega)$ with $u_0 \in \overline{C}$ and $\widetilde{J}_s(v) = d$.

We note that $u_0 \notin \partial C$ because otherwise the maximality of C as a connected component would be contradicted, so u_0 is a local minimizer of \widetilde{J}_s and we are done.

Recall from Proposition 2.5 that it was constructed a curve $(s + c(s), c(s)) \in \widehat{\Sigma}_p$ for $s \ge 0$. As $\widehat{\Sigma}_p$ is symmetric with respect to the diagonal, we can complete it with its symmetric part obtaining the following curve in $\widehat{\Sigma}_p$:

$$\mathcal{C} := \{ (s + c(s), c(s)), (c(s), s + c(s)) : s \ge 0 \}.$$
(3.7)

The next result points out that \mathcal{C} is the first nontrivial curve in $\widehat{\Sigma}_p$.

Theorem 3.3. Let $s \ge 0$. Then $(s + c(s), c(s)) \in C$ is the first point in the intersection between $\widehat{\Sigma}_p$ and the ray $(s, 0) + t(1, 1), t > \lambda_1$.

Proof. Assume, by contradiction, the existence of a point $(s + \mu, \mu) \in \hat{\Sigma}_p$ with $\lambda_1 < \mu < c(s)$. Proposition 3.1 and the fact that $\hat{\Sigma}_p$ is closed enable us to suppose that μ is the minimum number with the required property. By virtue of Lemma 2.1, μ is a critical value of the functional J_s and there is no critical value of \tilde{J}_s in the interval (λ_1, μ) . We complete the proof by reaching a contradiction to the

definition of c(s) in (2.4). To this end, it suffices to construct a path in Γ along which there holds $\widetilde{J}_s \leq \mu$.

Let $u \in S$ be a critical point of \widetilde{J}_s with $\widetilde{J}_s(u) = \mu$. Then u fulfills

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx = (s+\mu) \int_{\Omega} (u^+)^{p-1} v \, dx - \mu \int_{\Omega} (u^-)^{p-1} v \, dx$$
$$-\beta \int_{\partial \Omega} |u|^{p-2} uv \, d\sigma, \quad \forall v \in W^{1,p}(\Omega).$$

Setting $v = u^+$ and $v = -u^-$ yields

$$\int_{\Omega} |\nabla u^+|^p \, dx = (s+\mu) \int_{\Omega} (u^+)^p \, dx - \beta \int_{\partial \Omega} (u^+)^p \, d\sigma \tag{3.8}$$

and

$$\int_{\Omega} |\nabla u^{-}|^{p} dx = \mu \int_{\Omega} (u^{-})^{p} dx - \beta \int_{\partial \Omega} (u^{-})^{p} d\sigma, \qquad (3.9)$$

respectively. Since u changes sign (see Proposition 4.1), the following paths are well defined on S:

$$u_1(t) = \frac{(1-t)u + tu^+}{\|(1-t)u + tu^+\|_{L^p(\Omega)}},$$

$$u_2(t) = \frac{(1-t)u^+ + tu^-}{\|(1-t)u^+ + tu^-\|_{L^p(\Omega)}},$$

$$u_3(t) = \frac{-tu^- + (1-t)u}{\|-tu^- + (1-t)u\|_{L^p(\Omega)}}$$

for all $t \in [0, 1]$. By means of direct calculations based on (3.8) and (3.9) we infer that

$$\widetilde{J}_s(u_1(t)) = \widetilde{J}_s(u_3(t)) = \mu$$
, for all $t \in [0, 1]$

and

$$\widetilde{J}_s(u_2(t)) = \mu - \frac{st^p ||u^-||_{L^p(\Omega)}}{||(1-t)u^+ + tu^-||_{L^p(\Omega)}} \le \mu, \quad \text{for all } t \in [0,1].$$

Due to the minimality property of μ , the only critical points of \widetilde{J}_s in the set $\{w \in S : \widetilde{J}_s(w) < \mu - s\}$ are φ_1 and possibly $-\varphi_1$ provided $\mu - s > \lambda_1$. We note that, because $u^-/||u^-||_{L^p(\Omega)}$ does not change sign, it is not a critical point of \widetilde{J}_s . Therefore, there exists a C^1 path $\alpha : [-\varepsilon, \varepsilon] \to S$ with $\alpha(0) = u^-/||u^-||_{L^p(\Omega)}$ and $d/dt \widetilde{J}_s(\alpha(t))|_{t=0} \neq 0$. Using this path and observing from (3.9) that $\widetilde{J}_s(u^-/||u^-||_{L^p(\Omega)}) = \mu - s$, we can move from $u^-/||u^-||_{L^p(\Omega)}$ to a point v with $\widetilde{J}_s(v) < \mu - s$. Applying Lemma 3.2, we find that the connected component of $\{w \in S : \widetilde{J}_s(w) < \mu - s\}$ containing v crosses $\{\varphi_1, -\varphi_1\}$. Let us say it passes through φ_1 , otherwise the reasoning is the same employing $-\varphi_1$. Consequently, there is a path $u_4(t)$ from $u^-/||u^-||_{L^p(\Omega)}$ to φ_1 within the set $\{w \in S : \widetilde{J}_s(w) < \mu - s\}$. Then the path $-u_4(t)$ joins $-u^-/||u^-||_{L^p(\Omega)}$ and $-\varphi_1$ and, since $u_4(t) \in S$, we have

$$J_s(-u_4(t)) \le J_s(u_4(t)) + s < \mu - s + s = \mu$$
 for all t.

Connecting $u_1(t)$, $u_2(t)$ and $u_4(t)$, we construct a path joining u and φ_1 , and joining $u_3(t)$ and $-u_4(t)$ we get a path which connects u and $-\varphi_1$. These yield a path $\gamma(t)$

on S joining φ_1 and $-\varphi_1$. Furthermore, in view of the discussion above, it turns out $J_s(\gamma(t)) \leq \mu$ for all t. This proves the theorem.

Corollary 3.4. The second eigenvalue λ_2 of (1.3) has the variational characterization given in (1.4).

Proof. Theorem 3.3 for s = 0 ensures that $c(0) = \lambda_2$. The conclusion now follows by applying Proposition 2.5 (i) with s = 0.

4. PROPERTIES OF THE FIRST CURVE

The following proposition establishes an important sign property related to the curve \mathcal{C} in (3.7).

Proposition 4.1. Let $(a_0, b_0) \in C$ and $a, b \in L^{\infty}(\Omega)$ satisfy $\lambda_1 \leq a(x) \leq a_0$, $\lambda_1 \leq b(x) \leq b_0$ for a.a. $x \in \Omega$ such that $\lambda_1 < a(x)$ and $\lambda_1 < b(x)$ on subsets of positive measure. Then any nontrivial solution u of

$$-\Delta_p u = a(x)(u^+)^{p-1} - b(x)(u^-)^{p-1} \qquad in \ \Omega,$$

$$|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} = -\beta |u|^{p-2} u \qquad on \ \partial\Omega,$$

(4.1)

changes sign in Ω .

Proof. Let u be a nontrivial solution of equation (4.1). Then, -u is a nontrivial solution of

$$-\Delta_p z = b(x)(z^+)^{p-1} - a(x)(z^-)^{p-1} \quad \text{in } \Omega,$$
$$|\nabla z|^{p-2} \frac{\partial z}{\partial \nu} = -\beta |z|^{p-2} z \quad \text{on } \partial\Omega,$$

hence, we can suppose that the point $(a_0, b_0) \in C$ is such that $a_0 \geq b_0$. We argue by contradiction and assume that u does not change sign in Ω . Without loss of generality, we may admit that $u \ge 0$ a.e. in Ω , so u is a solution of the Robin weighted eigenvalue problem with weight a(x):

$$-\Delta_p u = a(x)u^{p-1} \qquad \text{in } \Omega,$$
$$\nabla u|^{p-2}\frac{\partial u}{\partial \nu} = -\beta u^{p-1} \qquad \text{on } \partial\Omega$$

It means that u is an eigenfunction corresponding to the eigenvalue 1 for this problem. Recall that the first eigenvalue $\lambda_1(a)$ of the above weighted problem is expressed as

$$\lambda_1(a) = \inf_{\substack{v \in W^{1,p}(\Omega) \\ v \neq 0}} \frac{\int_{\Omega} |\nabla v|^p dx + \beta \int_{\partial \Omega} |v|^p d\sigma}{\int_{\Omega} a(x) |v|^p dx}$$

The fact that $u \ge 0$ entails $\lambda_1(a) = 1$ because the only eigenfunction whose eigenfunctions do not change sign is $\lambda_1(a)$ (see [13]). Then the hypothesis that $\lambda_1 < a(x)$ on a set of positive measure leads to the contradiction

$$1 = \frac{\int_{\Omega} |\nabla \varphi_1|^p dx + \beta \int_{\partial \Omega} |\varphi_1|^p d\sigma}{\lambda_1} > \frac{\int_{\Omega} |\nabla \varphi_1|^p dx + \beta \int_{\partial \Omega} |\varphi_1|^p d\sigma}{\int_{\Omega} a(x) \varphi_1^p dx} \ge \lambda_1(a) = 1,$$
 hich completes the proof.

which completes the proof.

Proposition 4.2. The curve $s \mapsto (s + c(s), c(s))$ is Lipschitz continuous and decreasing.

Proof. If $s_1 < s_2$, then it follows $\widetilde{J}_{s_1}(u) \ge \widetilde{J}_{s_2}(u)$ for all $u \in S$, which ensures that $c(s_1) \ge c(s_2)$. For every $\varepsilon > 0$ there exists $\gamma \in \Gamma$ such that

$$\max_{u \in \gamma[-1,1]} \widetilde{J}_{s_2}(u) \le c(s_2) + \varepsilon,$$

hence

$$0 \le c(s_1) - c(s_2) \le \max_{u \in \gamma[-1,1]} \widetilde{J}_{s_1}(u) - \max_{u \in \gamma[-1,1]} \widetilde{J}_{s_2}(u) + \varepsilon.$$

Taking $u_0 \in \gamma[-1, 1]$ such that

$$\max_{u \in \gamma[-1,1]} \widetilde{J}_{s_1}(u) = \widetilde{J}_{s_1}(u_0)$$

yields

$$0 \le c(s_1) - c(s_2) \le \widetilde{J}_{s_1}(u_0) - \widetilde{J}_{s_2}(u_0) + \varepsilon = s_1 - s_2 + \varepsilon.$$

As $\varepsilon > 0$ was arbitrary, this ensures that $s \mapsto (s+c(s), c(s))$ is Lipschitz continuous. In order to prove that the curve is decreasing, it suffices to argue for s > 0. Let $0 < s_1 < s_2$. Then, since $(s_1 + c(s_1), c(s_1)), (s_2 + c(s_2), c(s_2)) \in \widehat{\Sigma}_p$, Theorem 3.3 implies that $s_1 + c(s_1) < s_2 + c(s_2)$. On the other hand, as already remarked, there holds $c(s_1) \ge c(s_2)$, which completes the proof.

Next we investigate the asymptotic behavior of the curve \mathcal{C} .

Theorem 4.3. Let $p \leq N$. Then the limit of c(s) as $s \to +\infty$ is λ_1 .

Proof. Let us proceed by contradiction and suppose that c(s) does not converge to λ_1 as $s \to +\infty$. Then there exists $\delta > 0$ such that

$$\max_{u \in \gamma[-1,1]} \widetilde{J}_s(u) \ge \lambda_1 + \delta \quad \text{ for all } \gamma \in \Gamma \text{ and all } s \ge 0.$$

Since $p \leq N$, we can choose a function $\psi \in W^{1,p}(\Omega)$ which is unbounded from above. Then we define $\gamma \in \Gamma$ by

$$\gamma(t) = \frac{t\varphi_1 + (1 - |t|)\psi}{\|t\varphi_1 + (1 - |t|)\psi\|_{L^p(\Omega)}}, \quad t \in [-1, 1].$$

For every s > 0, let $t_s \in [-1, 1]$ satisfy

$$\max_{t \in [-1,1]} \widetilde{J}_s(\gamma(t)) = \widetilde{J}_s(\gamma(t_s)).$$

Denoting $v_s = t_s \varphi_1 + (1 - |t_s|)\psi$, we infer that

$$\int_{\Omega} |\nabla v_s|^p dx + \beta \int_{\partial \Omega} |v_s|^p d\sigma - s \int_{\Omega} (v_s^+)^p dx \ge (\lambda_1 + \delta) \int_{\Omega} |v_s|^p dx.$$
(4.2)

Letting $s \to +\infty$, we can assume along a subsequence that $t_s \to \tilde{t} \in [-1, 1]$. The family v_s being bounded in $W^{1,p}(\Omega)$, from (4.2) one sees that

$$\int_{\Omega} (v_s^+)^p dx \to 0 \quad \text{ as } s \to +\infty,$$

which forces

$$\tilde{t}\varphi_1 + (1 - |\tilde{t}|)\psi \le 0.$$

Due to the choice of ψ , this is impossible unless $\tilde{t} = -1$. Passing to the limit in (4.2) as $s \to +\infty$ and using $\tilde{t} = -1$, we arrive at the contradiction $\delta \leq 0$, so the proof is complete.

It remains to study the asymptotic properties of the curve C when p > N. For $\beta = 0$, problem (1.1) becomes a Neumann problem with homogeneous boundary condition that was studied in [3]. Therein, it is shown that

$$\lim_{s \to +\infty} c(s) = \begin{cases} \lambda_1 = 0 & \text{if } p \le N \\ \widetilde{\lambda} & \text{if } p > N, \end{cases}$$

where

$$\widetilde{\lambda} = \inf\left\{\int_{\Omega} |\nabla u|^p dx : u \in W^{1,p}(\Omega), \|u\|_{L^p(\Omega)} = 1 \text{ and } u \text{ vanishes somewhere in } \overline{\Omega}\right\}.$$

Therefore, we only have to treat the case $\beta > 0$. In this respect, the key idea is to work with an adequate equivalent norm on the space $W^{1,p}(\Omega)$. So, for $\beta > 0$ we introduce the norm

$$\|u\|_{\beta} = \|\nabla u\|_{L^{p}(\Omega)} + \beta \|u\|_{L^{p}(\partial\Omega)}, \qquad (4.3)$$

which is an equivalent norm on $W^{1,p}(\Omega)$ (see also Deng [9, Theorem 2.1]). Then we have the following.

Theorem 4.4. Let $\beta > 0$ and p > N. Then the limit of c(s) as $s \to +\infty$ is

$$\overline{\lambda} = \inf_{u \in L} \max_{r \in \mathbb{R}} \frac{\int_{\Omega} |\nabla (r\varphi_1 + u)|^p dx + \beta \int_{\partial \Omega} |r\varphi_1 + u|^p d\sigma}{\int_{\Omega} |r\varphi_1 + u|^p dx},$$

where

$$L = \{ u \in W^{1,p}(\Omega) : u \text{ vanishes somewhere in } \overline{\Omega}, \quad u \neq 0 \}.$$

Moreover, there holds $\overline{\lambda} > \lambda_1$.

Proof. First, we are going to prove the strict inequality $\overline{\lambda} > \lambda_1$. Since for every $w \in L$ one has

$$\frac{\int_{\Omega} |\nabla w|^p dx + \beta \int_{\partial \Omega} |w|^p d\sigma}{\int_{\Omega} |w|^p dx} \le \max_{r \in \mathbb{R}} \frac{\int_{\Omega} |\nabla (r\varphi_1 + w)|^p dx + \beta \int_{\partial \Omega} |r\varphi_1 + w|^p d\sigma}{\int_{\Omega} |r\varphi_1 + w|^p dx}$$

we conclude that

$$\lambda_1 \le \inf_{w \in L} \frac{\int_{\Omega} |\nabla w|^p dx + \beta \int_{\partial \Omega} |w|^p d\sigma}{\int_{\Omega} |w|^p dx} \le \overline{\lambda}.$$
(4.4)

Let us check that the first inequality in (4.4) is strict. On the contrary, we would find a sequence $(w_n) \subset L$ satisfying

$$\frac{\int_{\Omega} |\nabla w_n|^p dx + \beta \int_{\partial \Omega} |w_n|^p d\sigma}{\int_{\Omega} |w_n|^p dx} \to \lambda_1 \text{ as } n \to \infty.$$

Set $v_n = \frac{w_n}{\|w_n\|_{\beta}}$, where $\|\cdot\|_{\beta}$ denotes the equivalent norm on $W^{1,p}(\Omega)$ introduced in (4.3). We note that $\|v_n\|_{\beta} = 1$ and

$$\frac{1}{\int_{\Omega} |v_n|^p dx} \to \lambda_1 \text{ as } n \to \infty.$$

Due to the compact embedding $W^{1,p}(\Omega) \hookrightarrow C(\overline{\Omega})$, there is a subsequence of (v_n) , still denoted by (v_n) , such that $v_n \rightharpoonup v$ in $W^{1,p}(\Omega)$ and $v_n \rightarrow v$ uniformly on $\overline{\Omega}$. It follows that $v \in L$ and

$$\frac{\int_{\Omega} |\nabla v|^p dx + \beta \int_{\partial \Omega} |v|^p d\sigma}{\int_{\Omega} |v|^p dx} \le \lambda_1 = \frac{1}{\int_{\Omega} |v|^p dx},$$

which ensures that v is an eigenfunction in (1.3) corresponding to the first eigenvalue λ_1 . This is a contradiction because every eigenfunction associated to λ_1 is strictly positive or negative on $\overline{\Omega}$, whereas $v \in L$. Hence, recalling (4.4), we get $\overline{\lambda} > \lambda_1$. Now we prove the first part in the theorem. We start by claiming that there exist $u \in L$ such that

$$\max_{r \in \mathbb{R}} \frac{\int_{\Omega} |\nabla (r\varphi_1 + u)|^p dx + \beta \int_{\partial \Omega} |r\varphi_1 + u|^p d\sigma}{\int_{\Omega} |r\varphi_1 + u|^p dx} = \overline{\lambda}.$$
(4.5)

By the definition of $\overline{\lambda}$, we can find sequences $(u_n) \subset L$ and $(r_n) \subset \mathbb{R}$ such that

$$\max_{r \in \mathbb{R}} \frac{\int_{\Omega} |\nabla (r\varphi_1 + u_n)|^p dx + \beta \int_{\partial \Omega} |r\varphi_1 + u_n|^p d\sigma}{\int_{\Omega} |r\varphi_1 + u_n|^p dx}$$

$$= \frac{\int_{\Omega} |\nabla (r_n \varphi_1 + u_n)|^p dx + \beta \int_{\partial \Omega} |r_n \varphi_1 + u_n|^p d\sigma}{\int_{\Omega} |r_n \varphi_1 + u_n|^p dx} \to \overline{\lambda} \text{ as } n \to \infty.$$
(4.6)

Without loss of generality, we can assume that $||u_n||_{W^{1,p}(\Omega)} = 1$. The sequence (r_n) has to be bounded because otherwise there would exist a relabeled subsequence $r_n \to +\infty$, which results in

$$\frac{\int_{\Omega} |\nabla r_n \varphi_1 + u_n|^p dx + \beta \int_{\partial \Omega} |r_n \varphi_1 + u_n|^p d\sigma}{\int_{\Omega} |r_n \varphi_1 + u_n|^p dx} \to \lambda_1.$$

This implies that $\lambda_1 = \overline{\lambda}$, contradicting the inequality $\overline{\lambda} > \lambda_1$. Therefore, we may suppose that $r_n \to \widetilde{r} \in \mathbb{R}$ and $u_n \to u$ in $W^{1,p}(\Omega)$ as well as $u_n \to u$ uniformly in $\overline{\Omega}$, with some $u \in L$. Then, through (4.6), we see that (4.5) holds true.

To prove that $c(s) \to \overline{\lambda}$ as $s \to +\infty$, we argue by contradiction admitting that there exists $\delta > 0$ such that

$$\max_{t \in [-1,1]} \widetilde{J}_s(\gamma(t)) \ge \overline{\lambda} + \delta \text{ for all } \gamma \in \Gamma \text{ and all } s \ge 0.$$

Here the decreasing monotonicity of c(s) has been used (see Proposition 4.2). Consider the path $\gamma \in \Gamma$ defined by

$$\gamma(t) = \frac{t\varphi_1 + (1 - |t|)u}{\|t\varphi_1 + (1 - |t|)u\|_{L^p(\Omega)}}, \quad t \in [-1, 1],$$

with u given in (4.5). Proceeding as in the proof of Theorem 4.3, for every s > 0 we fix $t_s \in [-1, 1]$ to satisfy

$$\max_{t \in [-1,1]} \widetilde{J}_s(\gamma(t)) = \widetilde{J}_s(\gamma(t_s))$$

and denote $v_s = t_s \varphi_1 + (1 - |t_s|)u$. We have

$$\int_{\Omega} |\nabla v_s|^p dx + \beta \int_{\partial \Omega} |v_s|^p d\sigma - s \int_{\Omega} (v_s^+)^p dx \ge (\overline{\lambda} + \delta) \int_{\Omega} |v_s|^p dx.$$
(4.7)

From (4.7), we obtain $\int_{\Omega} (v_s^+)^p dx \to 0$ and $t_s \to \tilde{t} \in [-1, 1]$ as $s \to +\infty$, which yields $\tilde{t}\varphi_1 \leq -(1 - |\tilde{t}|)u$. As $\varphi_1 > 0$ and u vanishes somewhere in $\overline{\Omega}$, we deduce that $\tilde{t} \leq 0$. In addition, passing to the limit in (4.7) leads to

$$\int_{\Omega} |\nabla(\tilde{t}\varphi_{1} + (1 - |\tilde{t}|)u)|^{p} dx + \beta \int_{\partial\Omega} |\tilde{t}\varphi_{1} + (1 - |\tilde{t}|)u|^{p} d\sigma$$

$$\geq (\overline{\lambda} + \delta) \int_{\Omega} |\tilde{t}\varphi_{1} + (1 - |\tilde{t}|)u|^{p} dx.$$
(4.8)

If $\tilde{t} \neq -1$, (4.8) can be expressed as

$$\frac{\int_{\Omega} \left| \nabla \left(\frac{\tilde{t}}{1+\tilde{t}} \varphi_1 + u \right) \right|^p dx + \beta \int_{\partial \Omega} \left| \frac{\tilde{t}}{1+\tilde{t}} \varphi_1 + u \right|^p d\sigma}{\int_{\Omega} \left| \frac{\tilde{t}}{1+\tilde{t}} \varphi_1 + u \right|^p dx} \ge \overline{\lambda} + \delta.$$

Comparing with (4.5) reveals that a contradiction is reached. If $\tilde{t} = -1$, in view of (4.8) and $\bar{\lambda} > \lambda_1$, we also arrive at a contradiction, which establishes the result. \Box

References

- M. Alif. Fučik spectrum for the Neumann problem with indefinite weights. In *Partial differ*ential equations, volume 229 of *Lecture Notes in Pure and Appl. Math.*, pages 45–62. Dekker, New York, 2002.
- [2] M. Arias and J. Campos. Radial Fučik spectrum of the Laplace operator. J. Math. Anal. Appl., 190(3):654–666, 1995.
- [3] M. Arias, J. Campos, and J.-P. Gossez. On the antimaximum principle and the Fučik spectrum for the Neumann p-Laplacian. Differential Integral Equations, 13(1-3):217–226, 2000.
- [4] N. P. Các. On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue. J. Differential Equations, 80(2):379–404, 1989.
- [5] M. Cuesta, D. de Figueiredo, and J.-P. Gossez. The beginning of the Fučik spectrum for the p-Laplacian. J. Differential Equations, 159(1):212–238, 1999.
- [6] E. N. Dancer. On the Dirichlet problem for weakly non-linear elliptic partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A, 76(4):283–300, 1976/77.
- [7] E. N. Dancer. Generic domain dependence for nonsmooth equations and the open set problem for jumping nonlinearities. *Topol. Methods Nonlinear Anal.*, 1(1):139–150, 1993.
- [8] D. G. de Figueiredo and J.-P. Gossez. On the first curve of the Fučik spectrum of an elliptic operator. *Differential Integral Equations*, 7(5-6):1285–1302, 1994.
- [9] S.-G. Deng. Positive solutions for Robin problem involving the p(x)-Laplacian. J. Math. Anal. Appl., 360(2):548-560, 2009.
- [10] P. Drábek. Solvability and bifurcations of nonlinear equations, volume 264 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1992.
- [11] S. Fučík. Solvability of nonlinear equations and boundary value problems, volume 4 of Mathematics and its Applications. D. Reidel Publishing Co., Dordrecht, 1980.
- [12] N. Ghoussoub. Duality and perturbation methods in critical point theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993.
- [13] A. Lê. Eigenvalue problems for the p-Laplacian. Nonlinear Anal., 64(5):1057–1099, 2006.
- [14] C. A. Margulies and W. Margulies. An example of the Fučik spectrum. Nonlinear Anal., 29(12):1373–1378, 1997.
- [15] A. Marino, A. M. Micheletti, and A. Pistoia. A nonsymmetric asymptotically linear elliptic problem. *Topol. Methods Nonlinear Anal.*, 4(2):289–339, 1994.
- [16] S. R. Martínez and J. D. Rossi. On the Fučik spectrum and a resonance problem for the p-Laplacian with a nonlinear boundary condition. *Nonlinear Anal.*, 59(6):813–848, 2004.
- [17] E. Massa. On a variational characterization of a part of the Fučík spectrum and a superlinear equation for the Neumann *p*-Laplacian in dimension one. Adv. Differential Equations, 9(5-6):699–720, 2004.
- [18] A. M. Micheletti. A remark on the resonance set for a semilinear elliptic equation. Proc. Roy. Soc. Edinburgh Sect. A, 124(4):803–809, 1994.

- [19] A. M. Micheletti and A. Pistoia. A note on the resonance set for a semilinear elliptic equation and an application to jumping nonlinearities. *Topol. Methods Nonlinear Anal.*, 6(1):67–80, 1995.
- [20] A. M. Micheletti and A. Pistoia. On the Fučík spectrum for the p-Laplacian. Differential Integral Equations, 14(7):867–882, 2001.
- [21] D. Motreanu and M. Tanaka. Sign-changing and constant-sign solutions for p-laplacian problems with jumping nonlinearities. J. Differential Equations, 249(11):3352–3376, 2010.
- [22] K. Perera. Resonance problems with respect to the Fučík spectrum of the p-Laplacian. Electron. J. Differential Equations, pages No. 36, 10 pp. (electronic), 2002.
- [23] K. Perera. On the Fučík spectrum of the p-Laplacian. NoDEA Nonlinear Differential Equations Appl., 11(2):259–270, 2004.
- [24] A. Pistoia. A generic property of the resonance set of an elliptic operator with respect to the domain. Proc. Roy. Soc. Edinburgh Sect. A, 127(6):1301–1310, 1997.
- [25] M. Schechter. The Fučík spectrum. Indiana Univ. Math. J., 43(4):1139–1157, 1994.

Département de Mathématiques, Université de Perpignan, Avenue Paul Alduy 52, 66860 Perpignan Cedex, France

E-mail address: motreanu@univ-perp.fr

Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin, Germany

E-mail address: winkert@math.tu-berlin.de