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Abstract. The aim of this paper is to study the Fuc̆ik spectrum of the p-

Laplacian with Robin boundary condition given by

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

|∇u|p−2 ∂u

∂ν
= −β|u|p−2u on ∂Ω,

where β ≥ 0. If β = 0, it reduces to the Fuc̆ik spectrum of the negative
Neumann p-Laplacian. The existence of a first nontrivial curve C of this spec-

trum is shown and we prove some properties of this curve, e.g., C is Lipschitz

continuous, decreasing and has a certain asymptotic behavior. A variational
characterization of the second eigenvalue λ2 of the Robin eigenvalue problem

involving the p-Laplacian is also obtained.

1. Introduction

The Fuc̆ik spectrum of the negative p-Laplacian with a Robin boundary condition

is defined as the set Σ̂p of (a, b) ∈ R2 such that

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

|∇u|p−2 ∂u

∂ν
= −β|u|p−2u on ∂Ω,

(1.1)

has a nontrivial solution. Here the domain Ω ⊂ RN is supposed to be bounded with
a smooth boundary ∂Ω. The notation −∆pu stands for the negative p-Laplacian of

u, i.e., −∆pu = −div(|∇u|p−2∇u), with 1 < p < +∞, while ∂u
∂ν denotes the outer

normal derivative of u and β is a parameter belonging to [0,+∞). We also denote
u± = max{±u, 0}. For β = 0, (1.1) becomes the Fuc̆ik spectrum of the negative
Neumann p-Laplacian. Let us recall that u ∈W 1,p(Ω) is a (weak) solution of (1.1)
if∫

Ω

|∇u|p−2∇u · ∇v dx+ β

∫
∂Ω

|u|p−2uv dσ =

∫
Ω

(a(u+)p−1 − b(u−)p−1)v dx, (1.2)

for all v ∈W 1,p(Ω). If a = b = λ, problem (1.1) reduces to

−∆pu = λ|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= −β|u|p−2u on ∂Ω,

(1.3)
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which is known as the Robin eigenvalue problem for the p-Laplacian. As proved in
[13], the first eigenvalue λ1 of problem (1.3) is simple, isolated and can be charac-
terized as follows

λ1 = inf
u∈W 1,p(Ω)

{∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ :

∫
Ω

|u|pdx = 1

}
.

It is also known that the eigenfunctions corresponding to λ1 are of constant sign
and belong to C1,α(Ω) for some 0 < α < 1. Throughout this paper, ϕ1 denotes the
eigenfunction of (1.3) associated to λ1 which is normalized as ‖ϕ1‖Lp(Ω) = 1 and
satisfies ϕ1 > 0. Let us also recall that every eigenfunction of (1.3) corresponding
to an eigenvalue λ > λ1 must change sign.

We briefly describe the context of the Fuc̆ik spectrum related to problem (1.1).
The Fuc̆ik spectrum was introduced by Fuc̆ik [11] in the case of the negative Lapla-
cian in one dimension with periodic boundary conditions. He proved that this
spectrum is composed of two families of curves emanating from the points (λk, λk)
determined by the eigenvalues λk of the problem. Afterwards, many authors studied
the Fuc̆ik spectrum Σ2 for the negative Laplacian with Dirichlet boundary condi-
tions (see [2, 4, 7, 14, 15, 18, 19, 24, 25] and the references therein). In this respect,
we mention that Dancer [6] proved that the lines R×{λ1} and {λ1}×R are isolated
in Σ2. De Figueiredo-Gossez [8] constructed a first nontrivial curve in Σ2 through
(λ2, λ2) and characterized it variationally. For p 6= 2 and in one dimension, Drábek
[10] has shown that Σp has similar properties as in the linear case, i.e., p = 2.
The Fuc̆ik spectrum Σp of the negative p-Laplacian with homogeneous Dirichlet
boundary conditions in the general case 1 < p < +∞ and N ≥ 1, that is

(a, b) ∈ Σp :
−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

u = 0 on ∂Ω,

has been studied by Cuesta-de Figueiredo-Gossez [5], where the authors proved the
existence of a first nontrivial curve through (λ2, λ2) and that the lines R × {λ1}
and {λ1}×R are isolated in Σp. For other results on Σp we refer to [20, 21, 22, 23].

The Fuc̆ik spectrum Θp of the negative p-Laplacian with homogeneous Neumann
boundary condition, that is

(a, b) ∈ Θp :

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

∂u

∂ν
= 0 on ∂Ω,

was investigated in [1, 3, 17]. It is worth emphasizing that Arias-Campos-Gossez
[3] pointed out an important difference between the cases p ≤ N and p > N
regarding the asymptotic properties of the first nontrivial curve in Θp. Note that
the Fuc̆ik spectrum Θp is incorporated in problem (1.1) by taking β = 0. Finally,
we mention the work of Mart́ınez and Rossi [16] who considered the Fuc̆ik spectrum

Σ̃p associated to Steklov boundary condition, which is introduced by

(a, b) ∈ Σ̃p :

−∆pu = −|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a(u+)p−1 − b(u−)p−1 on ∂Ω.

As in the previous situations, they constructed a first nontrivial curve in Σ̃p through
(λ2, λ2), where λ2 denotes the second eigenvalue of the Steklov eigenvalue problem,
and studied its asymptotic behavior.
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The aim of this paper is the study of the Fuc̆ik spectrum Σ̂p given in (1.1)
for the negative p-Laplacian with Robin boundary condition. We are going to
prove the existence of a first nontrivial curve C of this spectrum and show that it
shares the same properties as in the cases of the other problems discussed above:
Lipschitz continuity, strictly decreasing monotonicity and asymptotic behavior. It
is a significant fact that the presence of the parameter β in problem (1.1) does not
alter these basic properties. The main idea in studying the asymptotic behavior
of the curve C is the use of a suitable equivalent norm related to β. A relevant

consequence of the construction of the first nontrivial curve C in Σ̂p is the following
variational characterization of the second eigenvalue λ2 of (1.3):

λ2 = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ
]
, (1.4)

where

Γ = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1, γ(1) = ϕ1},
with

S =

{
u ∈W 1,p(Ω) :

∫
Ω

|u|pdx = 1

}
. (1.5)

The results presented in this paper complete the picture of the Fuc̆ik spectrum
involving the p-Laplacian by adding in the case of Robin condition the informa-
tion previously known for Dirichlet problem (see [5]), Steklov problem (see [16]),
and homogeneous Neumann problem (see [3]). Actually, as already specified, the
results given here for the Fuc̆ik spectrum (1.1) of the negative p-Laplacian with
Robin boundary condition extend the ones known for the Fuc̆ik spectrum Θp under
Neumann boundary condition by simply making β = 0.

Our approach is variational relying on the functional associated to problem (1.1),
which is expressed on W 1,p(Ω) by

J(u) =

∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ −
∫

Ω

(a(u+)p + b(u−)p)dx.

It is clear that J ∈ C1(W 1,p(Ω),R) and the critical points of J coincide with the
weak solutions of problem (1.1). In comparison with the corresponding functionals
related to the Fuc̆ik spectrum for the Dirichlet and Steklov problems, the functional
J exhibits an essential difference because its expression does not contain the norm
of the space W 1,p(Ω), and it is also different from the functional used to treat the
Neumann problem because it contains the additional boundary term involving β.
However, in our proofs various ideas and techniques are worked out on the pattern
of [3], [5], [16].

The rest of the paper is organized as follows. Section 2 is devoted to the de-

termination of elements of Σ̂p by means of critical points of a suitable functional.

Section 3 sets forth the construction of the first nontrivial curve C in Σ̂p and the
variational characterization of the second eigenvalue λ2 for (1.3). Section 4 presents
the basic properties of C.

2. The spectrum Σ̂p through critical points

The aim of this section is to determine elements of the Fuc̆ik spectrum Σ̂p de-
fined in problem (1.1). They are found by critical points of a functional that is
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constructed by means of the Robin problem (1.1). To this end we follow certain
ideas in [5] and [16] developed for problems with Dirichlet and Steklov boundary
conditions.
For a fixed s ∈ R, s ≥ 0, and corresponding to β ≥ 0 given in problem (1.1), we
introduce the functional Js : W 1,p(Ω)→ R by

Js(u) =

∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ − s
∫

Ω

(u+)pdx,

thus Js ∈ C1(W 1,p(Ω),R). The set S introduced in (1.5) is a smooth submanifold

of W 1,p(Ω), and thus J̃s = Js|S is a C1 function in the sense of manifolds. We note

that u ∈ S is a critical point of J̃s (in the sense of manifolds) if and only if there
exists t ∈ R such that∫

Ω

|∇u|p−2∇u · ∇v dx+ β

∫
∂Ω

|u|p−2uv dσ − s
∫

Ω

(u+)p−1v dx

= t

∫
Ω

|u|p−2uv dx, ∀v ∈W 1,p(Ω).

(2.1)

Now we describe the relationship between the critical points of J̃s and the spec-

trum Σ̂p.

Lemma 2.1. Given a number s, one has that (s + Js(u), Js(u)) ∈ R2 belongs to

the spectrum Σ̂p if and only if there exists a critical point u ∈ S of J̃s such that
t = Js(u).

Proof. The definition in (1.2) for the weak solution shows that (t+s, t) ∈ Σ̂p if and
only if there is u ∈ S that solves the Robin problem

−∆pu = (t+ s)(u+)p−1 − t(u−)p−1 in Ω,

|∇u|p−2 ∂u

∂ν
= −β|u|p−2u on ∂Ω,

which means exactly (2.1). Inserting v = u in (2.1) yields t = Js(u), as required. �

Lemma 2.1 enables us to find points in Σ̂p through the critical points of J̃s. In

order to implement this, first we look for minimizers of J̃s.

Proposition 2.2. There hold:

(i) the first eigenfunction ϕ1 is a global minimizer of J̃s;

(ii) the point (λ1, λ1 − s) ∈ R2 belongs to Σ̂p.

Proof. (i) Since β, s ≥ 0, using the characterization of λ1 we have

J̃s(u) =

∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ − s
∫

Ω

(u+)pdx

≥ λ1

∫
Ω

|u|pdx− s
∫

Ω

(u+)pdx ≥ λ1 − s = Js(ϕ1), ∀u ∈ S.

(ii) On the basis of (i), we can apply Lemma 2.1. �

Next we produce a second critical point of J̃s as a local minimizer.

Proposition 2.3. There hold:

(i) the negative eigenfunction −ϕ1 is a strict local minimizer of J̃s;

(ii) the point (λ1 + s, λ1) ∈ R2 belongs to Σ̂p.
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Proof. (i) Arguing indirectly, let us suppose that there exists a sequence (un) ⊂ S
with un 6= −ϕ1, un → −ϕ1 in W 1,p(Ω) and J̃s(un) ≤ λ1 = J̃s(−ϕ1). If un ≤ 0 for
a.a. x ∈ Ω, we obtain

J̃s(un) =

∫
Ω

|∇un|pdx+ β

∫
∂Ω

|un|pdσ > λ1,

because un 6= −ϕ1 and un 6= ϕ1, which contradicts the assumption J̃s(un) ≤ λ1.
Consider now the complementary situation. Hence un changes sign whenever n is
sufficiently large, thereby we can set

wn =
u+
n

‖u+
n ‖Lp(Ω)

and rn = ‖∇wn‖pLp(Ω) + β‖wn‖pLp(∂Ω). (2.2)

We claim that, along a relabeled subsequence, rn → +∞ as n → ∞. Suppose by
contradiction that (rn) is bounded. This implies through (2.2) that (wn) is bounded
in W 1,p(Ω), so there exists a subsequence denoted again by (wn) such that wn → w
in Lp(Ω), for some w ∈ W 1,p(Ω). Since ‖wn‖Lp(Ω) = 1 and wn ≥ 0 a.e., we get
‖w‖Lp(Ω) = 1 and w ≥ 0. This contradicts the assumption that un → −ϕ1 in
Lp(Ω), thus proving the claim.
On the other hand, from (2.2) and by using the variational characterization of λ1,
we infer that

J̃s(un) = (rn − s)
∫

Ω

|u+
n |pdx+

∫
Ω

|∇u−n |pdx+ β

∫
∂Ω

|u−n |pdσ

≥ (rn − s)
∫

Ω

|u+
n |pdx+ λ1

∫
Ω

(u−n )pdx,

whereas the choice of (un) gives

J̃s(un) ≤ λ1 = λ1

∫
Ω

(u+
n )pdx+ λ1

∫
Ω

(u−n )pdx.

Combining the inequalities above results in

(λ1 − rn + s)

∫
Ω

(u+
n )pdx ≥ 0,

therefore λ1 ≥ rn − s. This is against the unboundedness of (rn), which completes
the proof of (i). Part (ii) follows from Lemma 2.1 because Js(−ϕ1) = λ1. �

Using the two local minima obtained in Propositions 2.2 and 2.3, we seek for

a third critical point of J̃s via a version of the Mountain-Pass Theorem on C1-
manifolds (see, e.g., [12, Theorem 3.2]). First, we check the Palais-Smale condition

for J̃s on the manifold S.

Lemma 2.4. The functional J̃s : S → R satisfies the Palais-Smale condition on S
in the sense of manifolds.

Proof. Let (un) ⊂ S be a sequence provided (Js(un)) is bounded and ‖J̃ ′s(un)‖∗ → 0
as n→∞, which means that there exists a sequence (tn) ⊂ R such that∣∣∣∣∣

∫
Ω

|∇un|p−2∇un · ∇v dx+ β

∫
∂Ω

|un|p−2unv dσ

− s
∫

Ω

(u+
n )p−1v dx− tn

∫
Ω

|un|p−2unv dx

∣∣∣∣∣ ≤ εn‖v‖W 1,p(Ω),

(2.3)
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for all v ∈W 1,p(Ω) and with εn → 0+. Note that Js(un) ≥ ‖∇un‖pLp(Ω) − s. Since

(un) ∈ S and (Js(un)) is bounded, we derive that (un) is bounded in W 1,p(Ω).
Thus, along a relabeled subsequence we may suppose that un ⇀ u in W 1,p(Ω),
un → u in Lp(Ω) and un → u in Lp(∂Ω). Taking v = un in (2.3) and using again
(un) ⊂ S shows that the sequence (tn) is bounded. Then, if we choose v = un − u,
it follows that ∫

Ω

|∇un|p−2∇un · ∇(un − u)dx→ 0 as n→∞.

At this point, the (S)+-property of −∆p on W 1,p(Ω) enables us to conclude that
un → u in W 1,p(Ω). �

Now we obtain, in addition to ϕ1 and −ϕ1, a third critical point of J̃s on S.

Proposition 2.5. There hold:
(i)

c(s) := inf
γ∈Γ

max
u∈γ[−1,1]

Js(u), (2.4)

where

Γ = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1 and γ(1) = ϕ1},

is a critical value of J̃s satisfying c(s) > max{J̃s(−ϕ1), J̃s(ϕ1)} = λ1. In particular,

there exists a critical point of J̃s that is different from −ϕ1 and ϕ1.

(ii) The point (s+ c(s), c(s)) belongs to Σ̂p.

Proof. (i) By Proposition 2.3 we know that −ϕ1 is a strict local minimizer of J̃s
with J̃s(−ϕ1) = λ1, while Proposition 2.2 ensures that ϕ1 is a global minimizer of

J̃s with J̃s(ϕ1) = λ1 − s. Then we can show that

inf{J̃s(u) : u ∈ S and ‖u− (−ϕ1)‖W 1,p(Ω) = ε} > max{J̃s(−ϕ1), J̃s(ϕ1)} = λ1,

whenever ε > 0 is sufficiently small. The proof that the inequality above is strict
can be done as in [5, Lemma 2.9] on the basis of Ekeland’s variational principle. In
order to fulfill the mountain-pass geometry we choose ε > 0 even smaller if necessary

to have 2‖ϕ1‖W 1,p(Ω) = ‖ϕ1 − (−ϕ1)‖W 1,p(Ω) > ε. Since J̃s : S → R satisfies the
Palais-Smale condition on the manifold S as shown in Lemma 2.4, we may invoke
the version of Mountain-Pass Theorem on manifolds (see, e.g., [12, Theorem 3.2]).

This guarantees that c(s) introduced in (2.4) is a critical value of J̃s with c(s) > λ1,
providing a critical point different from −ϕ1 and ϕ1.

(ii) Thanks to Lemma 2.1 and part (i), we infer that (s+ c(s), c(s)) ∈ Σ̂p. �

3. The first nontrivial curve

The results in Section 2 permit to determine the beginning of the spectrum

Σ̂p. We start by establishing that the lines {λ1} × R and R× {λ1} are isolated in

Σ̂p. This is known from [5, Proposition 3.4] for Dirichlet problems and from [16,
Proposition 3.1] for Steklov problems.

Proposition 3.1. There exists no sequence (an, bn) ∈ Σ̂p with an > λ1 and bn > λ1

such that (an, bn)→ (a, b) with a = λ1 or b = λ1.
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Proof. Proceeding indirectly, assume there exist sequences (an, bn) ∈ Σ̂p and (un) ⊂
W 1,p(Ω) with the properties: an → λ1, bn → b, an > λ1, bn > λ1, ‖un‖Lp(Ω) = 1
and

−∆pun = an(u+
n )p−1 − bn(u−n )p−1 in Ω,

|∇un|p−2 ∂un
∂ν

= −β|un|p−2un on ∂Ω.
(3.1)

If we test (3.1) with v = un (see (1.2)), we get

‖∇un‖pLp(Ω) = an

∫
Ω

(u+
n )p dx+ bn

∫
Ω

(u−n )p dx− β
∫
∂Ω

|un|p dσ ≤ an + bn,

which proves the boundedness of (un) in W 1,p(Ω). Hence, along a subsequence,
un ⇀ u in W 1,p(Ω) and un → u in Lp(Ω) and Lp(∂Ω). Now, testing (3.1) with
ϕ = un − u, we infer that

lim
n→∞

∫
Ω

|∇un|p−2∇un · ∇(un − u) dx = 0.

The (S)+-property of −∆p on W 1,p(Ω) yields that un → u in W 1,p(Ω). Thus, u is
a solution of the equation∫

Ω

|∇u|p−2∇u · ∇v dx

= λ1

∫
Ω

(u+)p−1v dx− b
∫

Ω

(u−)p−1v dx− β
∫
∂Ω

|u|p−2uv dσ,

(3.2)

for all v ∈W 1,p(Ω). Inserting v = u+ in (3.2) leads to∫
Ω

|∇u+|p dx = λ1

∫
Ω

(u+)p dx− β
∫
∂Ω

(u+)pdσ.

This, in conjunction with the characterization of λ1 in Section 1 and since ‖u‖Lp(Ω) =

1, ensures that either u+ = 0 or u+ = ϕ1. If u+ = 0, then u ≤ 0 and (3.2) implies
that u is an eigenfunction. Recalling that λ1 is the only eigenfunction that does
not change sign, we deduce that u = −ϕ1 (see [13] and also Proposition 4.1). This
renders that (un) converges either to ϕ1 or to −ϕ1 in Lp(Ω), which forces to have

either |{x ∈ Ω : un(x) < 0}| → 0 or |{x ∈ Ω : un > 0}| → 0, (3.3)

respectively, where |·| denotes the Lebesgue measure. Indeed, assuming for instance
un → ϕ1 in Lp(Ω), since for any compact subset K ⊂ Ω there holds∫

{un<0}∩K
|un − ϕ1|p dx ≥

∫
{un<0}∩K

ϕp1 dx ≥ C|{un < 0} ∩K|,

with a constant C > 0, it is seen that the first assertion in (3.3) is fulfilled.
On the other hand, using v = u+

n as test function for (3.1) in conjunction with
the Hölder inequality and the continuity of the embedding W 1,p(Ω) ↪→ Lq(Ω), with
p < q ≤ p∗, we obtain the estimate∫

Ω

|∇u+
n |pdx+

∫
Ω

(u+
n )pdx = an

∫
Ω

(u+
n )pdx− β

∫
∂Ω

(u+
n )pdσ +

∫
Ω

(u+
n )pdx

≤ (an + 1)

∫
Ω

(u+
n )pdx

≤ (an + 1)C|{x ∈ Ω : un(x) > 0}|1−
p
q ‖u+

n ‖
p
W 1,p(Ω),
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with a constant C > 0. We infer that

|{x ∈ Ω : un(x) > 0}|1−
p
q ≥ (an + 1)−1C−1.

and in the same way,

|{x ∈ Ω : un(x) < 0}|1−
p
q ≥ (bn + 1)−1C−1.

Since (an, bn) does not belong to the trivial lines of Σ̂p, we have that un changes
sign. Hence we reach a contradiction with (3.3), which completes the proof. �

The following auxiliary fact is helpful to link with the results established in
Section 2.

Lemma 3.2. For every r > infS Js = λ1 − s, each connected component of {u ∈
S : Js(u) < r} contains a critical point, in fact a local minimizer of J̃s.

Proof. Let C be a connected component of {u ∈ S : Js(u) < r} and denote d =

inf{Js(u) : u ∈ C}. We claim that there exists u0 ∈ C such that J̃s(u0) = d. To

this end, let (un) ⊂ C be a sequence such that J̃s(un) ≤ d+ 1
n2 . Applying Ekeland’s

variational principle to J̃s on C provides a sequence (vn) ⊂ C such that

J̃s(vn) ≤ J̃s(un), (3.4)

‖un − vn‖W 1,p(Ω) ≤
1

n
, (3.5)

J̃s(vn) ≤ J̃s(v) +
1

n
‖v − vn‖W 1,p(Ω), ∀v ∈ C. (3.6)

If n is sufficiently large, by (3.4) we obtain

J̃s(vn) ≤ J̃s(un) ≤ d+
1

n2
< r.

Moreover, owing to (3.6), it can be shown that (vn) is a Palais-Smale sequence for

J̃s. Then Lemma 2.4 and (3.5) ensure that, up to a relabeled subsequence, un → u0

in W 1,p(Ω) with u0 ∈ C and J̃s(v) = d.
We note that u0 6∈ ∂C because otherwise the maximality of C as a connected

component would be contradicted, so u0 is a local minimizer of J̃s and we are
done. �

Recall from Proposition 2.5 that it was constructed a curve (s+ c(s), c(s)) ∈ Σ̂p
for s ≥ 0. As Σ̂p is symmetric with respect to the diagonal, we can complete it

with its symmetric part obtaining the following curve in Σ̂p:

C := {(s+ c(s), c(s)), (c(s), s+ c(s)) : s ≥ 0}. (3.7)

The next result points out that C is the first nontrivial curve in Σ̂p.

Theorem 3.3. Let s ≥ 0. Then (s + c(s), c(s)) ∈ C is the first point in the

intersection between Σ̂p and the ray (s, 0) + t(1, 1), t > λ1.

Proof. Assume, by contradiction, the existence of a point (s + µ, µ) ∈ Σ̂p with

λ1 < µ < c(s). Proposition 3.1 and the fact that Σ̂p is closed enable us to suppose
that µ is the minimum number with the required property. By virtue of Lemma

2.1, µ is a critical value of the functional Js and there is no critical value of J̃s
in the interval (λ1, µ). We complete the proof by reaching a contradiction to the
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definition of c(s) in (2.4). To this end, it suffices to construct a path in Γ along

which there holds J̃s ≤ µ.

Let u ∈ S be a critical point of J̃s with J̃s(u) = µ. Then u fulfills∫
Ω

|∇u|p−2∇u · ∇v dx =(s+ µ)

∫
Ω

(u+)p−1v dx− µ
∫

Ω

(u−)p−1v dx

− β
∫
∂Ω

|u|p−2uv dσ, ∀v ∈W 1,p(Ω).

Setting v = u+ and v = −u− yields∫
Ω

|∇u+|p dx = (s+ µ)

∫
Ω

(u+)p dx− β
∫
∂Ω

(u+)pd σ (3.8)

and ∫
Ω

|∇u−|p dx = µ

∫
Ω

(u−)p dx− β
∫
∂Ω

(u−)p dσ, (3.9)

respectively. Since u changes sign (see Proposition 4.1), the following paths are
well defined on S:

u1(t) =
(1− t)u+ tu+

‖(1− t)u+ tu+‖Lp(Ω)
,

u2(t) =
(1− t)u+ + tu−

‖(1− t)u+ + tu−‖Lp(Ω)
,

u3(t) =
−tu− + (1− t)u

‖ − tu− + (1− t)u‖Lp(Ω)
,

for all t ∈ [0, 1]. By means of direct calculations based on (3.8) and (3.9) we infer
that

J̃s(u1(t)) = J̃s(u3(t)) = µ, for all t ∈ [0, 1]

and

J̃s(u2(t)) = µ−
stp‖u−‖Lp(Ω)

‖(1− t)u+ + tu−‖Lp(Ω)
≤ µ, for all t ∈ [0, 1].

Due to the minimality property of µ, the only critical points of J̃s in the

set {w ∈ S : J̃s(w) < µ − s} are ϕ1 and possibly −ϕ1 provided µ − s > λ1.
We note that, because u−/‖u−‖Lp(Ω) does not change sign, it is not a critical

point of J̃s. Therefore, there exists a C1 path α : [−ε, ε] → S with α(0) =

u−/‖u−‖Lp(Ω) and d/dtJ̃s(α(t))|t=0 6= 0. Using this path and observing from (3.9)

that J̃s(u
−/‖u−‖Lp(Ω)) = µ − s, we can move from u−/‖u−‖Lp(Ω) to a point v

with J̃s(v) < µ−s. Applying Lemma 3.2, we find that the connected component of

{w ∈ S : J̃s(w) < µ−s} containing v crosses {ϕ1,−ϕ1}. Let us say it passes through
ϕ1, otherwise the reasoning is the same employing −ϕ1. Consequently, there is a

path u4(t) from u−/‖u−‖Lp(Ω) to ϕ1 within the set {w ∈ S : J̃s(w) < µ− s}. Then

the path −u4(t) joins −u−/‖u−‖Lp(Ω) and −ϕ1 and, since u4(t) ∈ S, we have

J̃s(−u4(t)) ≤ J̃s(u4(t)) + s < µ− s+ s = µ for all t.

Connecting u1(t), u2(t) and u4(t), we construct a path joining u and ϕ1, and joining
u3(t) and −u4(t) we get a path which connects u and −ϕ1. These yield a path γ(t)
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on S joining ϕ1 and −ϕ1. Furthermore, in view of the discussion above, it turns

out J̃s(γ(t)) ≤ µ for all t. This proves the theorem. �

Corollary 3.4. The second eigenvalue λ2 of (1.3) has the variational characteri-
zation given in (1.4).

Proof. Theorem 3.3 for s = 0 ensures that c(0) = λ2. The conclusion now follows
by applying Proposition 2.5 (i) with s = 0. �

4. Properties of the first curve

The following proposition establishes an important sign property related to the
curve C in (3.7).

Proposition 4.1. Let (a0, b0) ∈ C and a, b ∈ L∞(Ω) satisfy λ1 ≤ a(x) ≤ a0,
λ1 ≤ b(x) ≤ b0 for a.a. x ∈ Ω such that λ1 < a(x) and λ1 < b(x) on subsets of
positive measure. Then any nontrivial solution u of

−∆pu = a(x)(u+)p−1 − b(x)(u−)p−1 in Ω,

|∇u|p−2 ∂u

∂ν
= −β|u|p−2u on ∂Ω,

(4.1)

changes sign in Ω.

Proof. Let u be a nontrivial solution of equation (4.1). Then, −u is a nontrivial
solution of

−∆pz = b(x)(z+)p−1 − a(x)(z−)p−1 in Ω,

|∇z|p−2 ∂z

∂ν
= −β|z|p−2z on ∂Ω,

hence, we can suppose that the point (a0, b0) ∈ C is such that a0 ≥ b0.
We argue by contradiction and assume that u does not change sign in Ω. Without
loss of generality, we may admit that u ≥ 0 a.e. in Ω, so u is a solution of the Robin
weighted eigenvalue problem with weight a(x):

−∆pu = a(x)up−1 in Ω,

|∇u|p−2 ∂u

∂ν
= −βup−1 on ∂Ω.

It means that u is an eigenfunction corresponding to the eigenvalue 1 for this
problem. Recall that the first eigenvalue λ1(a) of the above weighted problem is
expressed as

λ1(a) = inf
v∈W1,p(Ω)

v 6≡0

∫
Ω
|∇v|pdx+ β

∫
∂Ω
|v|pdσ∫

Ω
a(x)|v|pdx

.

The fact that u ≥ 0 entails λ1(a) = 1 because the only eigenfunction whose eigen-
functions do not change sign is λ1(a) (see [13]). Then the hypothesis that λ1 < a(x)
on a set of positive measure leads to the contradiction

1 =

∫
Ω
|∇ϕ1|pdx+ β

∫
∂Ω
|ϕ1|pdσ

λ1
>

∫
Ω
|∇ϕ1|pdx+ β

∫
∂Ω
|ϕ1|pdσ∫

Ω
a(x)ϕp1dx

≥ λ1(a) = 1,

which completes the proof. �

Proposition 4.2. The curve s 7→ (s + c(s), c(s)) is Lipschitz continuous and de-
creasing.
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Proof. If s1 < s2, then it follows J̃s1(u) ≥ J̃s2(u) for all u ∈ S, which ensures that
c(s1) ≥ c(s2). For every ε > 0 there exists γ ∈ Γ such that

max
u∈γ[−1,1]

J̃s2(u) ≤ c(s2) + ε,

hence

0 ≤ c(s1)− c(s2) ≤ max
u∈γ[−1,1]

J̃s1(u)− max
u∈γ[−1,1]

J̃s2(u) + ε.

Taking u0 ∈ γ[−1, 1] such that

max
u∈γ[−1,1]

J̃s1(u) = J̃s1(u0)

yields

0 ≤ c(s1)− c(s2) ≤ J̃s1(u0)− J̃s2(u0) + ε = s1 − s2 + ε.

As ε > 0 was arbitrary, this ensures that s 7→ (s+c(s), c(s)) is Lipschitz continuous.
In order to prove that the curve is decreasing, it suffices to argue for s > 0. Let

0 < s1 < s2. Then, since (s1 + c(s1), c(s1)), (s2 + c(s2), c(s2)) ∈ Σ̂p, Theorem 3.3
implies that s1 + c(s1) < s2 + c(s2). On the other hand, as already remarked, there
holds c(s1) ≥ c(s2), which completes the proof. �

Next we investigate the asymptotic behavior of the curve C.

Theorem 4.3. Let p ≤ N . Then the limit of c(s) as s→ +∞ is λ1.

Proof. Let us proceed by contradiction and suppose that c(s) does not converge to
λ1 as s→ +∞. Then there exists δ > 0 such that

max
u∈γ[−1,1]

J̃s(u) ≥ λ1 + δ for all γ ∈ Γ and all s ≥ 0.

Since p ≤ N , we can choose a function ψ ∈ W 1,p(Ω) which is unbounded from
above. Then we define γ ∈ Γ by

γ(t) =
tϕ1 + (1− |t|)ψ

‖tϕ1 + (1− |t|)ψ‖Lp(Ω)
, t ∈ [−1, 1].

For every s > 0, let ts ∈ [−1, 1] satisfy

max
t∈[−1,1]

J̃s(γ(t)) = J̃s(γ(ts)).

Denoting vs = tsϕ1 + (1− |ts|)ψ, we infer that∫
Ω

|∇vs|pdx+ β

∫
∂Ω

|vs|pdσ − s
∫

Ω

(v+
s )pdx ≥ (λ1 + δ)

∫
Ω

|vs|pdx. (4.2)

Letting s → +∞, we can assume along a subsequence that ts → t̃ ∈ [−1, 1]. The
family vs being bounded in W 1,p(Ω), from (4.2) one sees that∫

Ω

(v+
s )pdx→ 0 as s→ +∞,

which forces

t̃ϕ1 + (1− |t̃|)ψ ≤ 0.

Due to the choice of ψ, this is impossible unless t̃ = −1. Passing to the limit in
(4.2) as s → +∞ and using t̃ = −1, we arrive at the contradiction δ ≤ 0, so the
proof is complete.
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�

It remains to study the asymptotic properties of the curve C when p > N . For
β = 0, problem (1.1) becomes a Neumann problem with homogeneous boundary
condition that was studied in [3]. Therein, it is shown that

lim
s→+∞

c(s) =

{
λ1 = 0 if p ≤ N
λ̃ if p > N,

where

λ̃ = inf

{∫
Ω

|∇u|pdx : u ∈W 1,p(Ω), ‖u‖Lp(Ω) = 1 and u vanishes somewhere in Ω

}
.

Therefore, we only have to treat the case β > 0. In this respect, the key idea is to
work with an adequate equivalent norm on the space W 1,p(Ω). So, for β > 0 we
introduce the norm

‖u‖β = ‖∇u‖Lp(Ω) + β‖u‖Lp(∂Ω), (4.3)

which is an equivalent norm on W 1,p(Ω) (see also Deng [9, Theorem 2.1]). Then
we have the following.

Theorem 4.4. Let β > 0 and p > N . Then the limit of c(s) as s→ +∞ is

λ = inf
u∈L

max
r∈R

∫
Ω
|∇(rϕ1 + u)|pdx+ β

∫
∂Ω
|rϕ1 + u|pdσ∫

Ω
|rϕ1 + u|pdx

,

where

L = {u ∈W 1,p(Ω) : u vanishes somewhere in Ω, u 6≡ 0}.

Moreover, there holds λ > λ1.

Proof. First, we are going to prove the strict inequality λ > λ1. Since for every
w ∈ L one has∫

Ω
|∇w|pdx+ β

∫
∂Ω
|w|pdσ∫

Ω
|w|pdx

≤ max
r∈R

∫
Ω
|∇(rϕ1 + w)|pdx+ β

∫
∂Ω
|rϕ1 + w|pdσ∫

Ω
|rϕ1 + w|pdx

,

we conclude that

λ1 ≤ inf
w∈L

∫
Ω
|∇w|pdx+ β

∫
∂Ω
|w|pdσ∫

Ω
|w|pdx

≤ λ. (4.4)

Let us check that the first inequality in (4.4) is strict. On the contrary, we would
find a sequence (wn) ⊂ L satisfying∫

Ω
|∇wn|pdx+ β

∫
∂Ω
|wn|pdσ∫

Ω
|wn|pdx

→ λ1 as n→∞.

Set vn = wn
‖wn‖β , where ‖ · ‖β denotes the equivalent norm on W 1,p(Ω) introduced

in (4.3). We note that ‖vn‖β = 1 and

1∫
Ω
|vn|pdx

→ λ1 as n→∞.
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Due to the compact embedding W 1,p(Ω) ↪→ C(Ω), there is a subsequence of (vn),
still denoted by (vn), such that vn ⇀ v in W 1,p(Ω) and vn → v uniformly on Ω. It
follows that v ∈ L and∫

Ω
|∇v|pdx+ β

∫
∂Ω
|v|pdσ∫

Ω
|v|pdx

≤ λ1 =
1∫

Ω
|v|pdx

,

which ensures that v is an eigenfunction in (1.3) corresponding to the first eigenvalue
λ1. This is a contradiction because every eigenfunction associated to λ1 is strictly
positive or negative on Ω, whereas v ∈ L. Hence, recalling (4.4), we get λ > λ1.
Now we prove the first part in the theorem. We start by claiming that there exist
u ∈ L such that

max
r∈R

∫
Ω
|∇(rϕ1 + u)|pdx+ β

∫
∂Ω
|rϕ1 + u|pdσ∫

Ω
|rϕ1 + u|pdx

= λ. (4.5)

By the definition of λ, we can find sequences (un) ⊂ L and (rn) ⊂ R such that

max
r∈R

∫
Ω
|∇(rϕ1 + un)|pdx+ β

∫
∂Ω
|rϕ1 + un|pdσ∫

Ω
|rϕ1 + un|pdx

=

∫
Ω
|∇(rnϕ1 + un)|pdx+ β

∫
∂Ω
|rnϕ1 + un|pdσ∫

Ω
|rnϕ1 + un|pdx

→ λ as n→∞.
(4.6)

Without loss of generality, we can assume that ‖un‖W 1,p(Ω) = 1. The sequence (rn)
has to be bounded because otherwise there would exist a relabeled subsequence
rn → +∞, which results in∫

Ω
|∇rnϕ1 + un|pdx+ β

∫
∂Ω
|rnϕ1 + un|pdσ∫

Ω
|rnϕ1 + un|pdx

→ λ1.

This implies that λ1 = λ, contradicting the inequality λ > λ1. Therefore, we may
suppose that rn → r̃ ∈ R and un ⇀ u in W 1,p(Ω) as well as un → u uniformly in
Ω, with some u ∈ L. Then, through (4.6), we see that (4.5) holds true.

To prove that c(s) → λ as s → +∞, we argue by contradiction admitting that
there exists δ > 0 such that

max
t∈[−1,1]

J̃s(γ(t)) ≥ λ+ δ for all γ ∈ Γ and all s ≥ 0.

Here the decreasing monotonicity of c(s) has been used (see Proposition 4.2). Con-
sider the path γ ∈ Γ defined by

γ(t) =
tϕ1 + (1− |t|)u

‖tϕ1 + (1− |t|)u‖Lp(Ω)
, t ∈ [−1, 1],

with u given in (4.5). Proceeding as in the proof of Theorem 4.3, for every s > 0
we fix ts ∈ [−1, 1] to satisfy

max
t∈[−1,1]

J̃s(γ(t)) = J̃s(γ(ts))

and denote vs = tsϕ1 + (1− |ts|)u. We have∫
Ω

|∇vs|pdx+ β

∫
∂Ω

|vs|pdσ − s
∫

Ω

(v+
s )pdx ≥ (λ+ δ)

∫
Ω

|vs|pdx. (4.7)
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From (4.7), we obtain
∫

Ω
(v+
s )pdx → 0 and ts → t̃ ∈ [−1, 1] as s → +∞, which

yields t̃ϕ1 ≤ −(1 − |t̃|)u. As ϕ1 > 0 and u vanishes somewhere in Ω, we deduce

that t̃ ≤ 0. In addition, passing to the limit in (4.7) leads to∫
Ω

|∇(t̃ϕ1 + (1− |t̃|)u)|pdx+ β

∫
∂Ω

|t̃ϕ1 + (1− |t̃|)u|pdσ

≥ (λ+ δ)

∫
Ω

|t̃ϕ1 + (1− |t̃|)u|pdx.
(4.8)

If t̃ 6= −1, (4.8) can be expressed as∫
Ω

∣∣∣∇( t̃
1+t̃

ϕ1 + u
)∣∣∣p dx+ β

∫
∂Ω

∣∣∣ t̃
1+t̃

ϕ1 + u
∣∣∣p dσ∫

Ω

∣∣∣ t̃
1+t̃

ϕ1 + u
∣∣∣p dx ≥ λ+ δ.

Comparing with (4.5) reveals that a contradiction is reached. If t̃ = −1, in view of
(4.8) and λ > λ1, we also arrive at a contradiction, which establishes the result. �
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Département de Mathématiques, Université de Perpignan, Avenue Paul Alduy 52,
66860 Perpignan Cedex, France

E-mail address: motreanu@univ-perp.fr

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany

E-mail address: winkert@math.tu-berlin.de


	1. Introduction
	2. The spectrum "0362p through critical points
	3. The first nontrivial curve
	4. Properties of the first curve
	References

