LOCAL C!'(Q)-MINIMIZERS VERSUS LOCAL
Whr(Q)-MINIMIZERS OF NONSMOOTH FUNCTIONALS

PATRICK WINKERT

ABSTRACT. We study not necessarily differentiable functionals of the form

1 1
J(u) = 7/ |Vu\pdz+f/ \ulpdz-i-/ jl(a:,u)dx+/ ja(z,yu)do
pPJa pJa Q o0

with 1 < p < oo involving locally Lipschitz functions ji : @ X R — R as well
as jo : 02 x R — R. We prove that local C!(Q)-minimizers of J must be local
W1P(Q)-minimizers of J.

1. INTRODUCTION

We consider the functional J : W?(Q) — R defined by
1 1
J(u) = 7/ |Vul|Pdz + */ |u|Pdx —|—/ Ji(x,u)dz +/ Jo(x,yu)do
pJa D Ja Q oQ

with 1 < p < co. The domain Q C RY is supposed to be bounded with Lipschitz
boundary 992 and the nonlinearities j; : @ X R — R as well as jo : 02 x R - R
are measurable in the first argument and locally Lipschitz in the second one. By
v WhP(Q) — L2(99) for 1 < q1 < pi (p« = (N = 1)p/(N —p) if p < N and
px = +oo if p > N), we denote the trace operator which is known to be linear,
bounded and even compact. Note that J : W1P(Q) — R does not have to be
differentiable and that it corresponds to the following elliptic inclusion

—Apu + |ulP2u + 95y (z,u) 30 in Q,
0
5%: + Jja(x,yu) 30 on 992,
where —Ayu = —div(|Vu|P~2Vu),1 < p < oo, is the negative p-Laplacian. The

symbol % denotes the outward pointing conormal derivative associated with —A,
and 9ji(z,u), k = 1,2, stands for Clarke’s generalized gradient given by

Ojp(z,8) ={£ e R: jp(x,s;7) > &r,Vr € R}
The term jp(z,s;r) denotes the generalized directional derivative of the locally
Lipschitz function s — ji(x, s) at s in the direction r defined by
. )
0z, 5:7) = lim sup Je(@,y +tr) = jr(@,y)
y—s,tl0 t

(cf. [6, Chapter 2]). It is clear that jp(x,s;r) € R because ji(z,-) is locally
Lipschitz.
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The main goal of this paper is the comparison of local C1(€2) and local WP (Q)-
minimizers. That means that if ug € WHP(Q) is a local C'*(Q)-minimizer of J,
then wug is also a local W1P(Q)-minimizer of J. This result is stated in our main
Theorem 3.1.

Such a result was first proven for functionals corresponding to elliptic equations
with Dirichlet boundary values by Brezis and Nirenberg in [3] if p = 2. They
consider potentials of the form

o) = [ 5IVul = [ P,

where F(z,u) = fou f(z, s)ds with some Carathéodory function f: Q@ xR — R. An
extension to the more general case 1 < p < co can be found in the paper of Garcia
Azorero et al. in [7]. We also refer the reader to [8] if p > 2. As regards nonsmooth
functionals defined on Wol’p(ﬂ) with 2 < p < oo, we point to the paper [14]. A
very inspiring paper about local minimizers of potentials associated with nonlinear
parametric Neumann problems was published by Motreanu et al. in [13]. Therein,
the authors study the functional

1
do(z) = ];||Dw||£ 7/ Fo(z,z(z))dz, Vz¢€ Wé’p(Q)
z
with
ox
L.p - Lp . -
W, P(2) {yGW (Q)an O},

where %ﬁ is the outer normal derivative of u and Fy(z,z) = fox fo(z, 8)ds, as well

as 1 < p < oo. A similar result corresponding to nonsmooth functionals defined on
WLP(Q) for the case 2 < p < 0o was proved in [2]. We also refer the reader to the
paper in [10] for 1 < p < co.

A recent paper about the relationship between local C'!'(Q)-minimizers and local
WP (Q)-minimizers of C!-functionals has been treated by the author in [15]. The
idea of the present paper was the generalization to the more general case of non-
smooth functionals defined on W1P() with 1 < p < oo involving boundary inte-
grals which in general do not vanish.

2. HYPOTHESES
We suppose the following conditions on the nonsmooth potentials j; : @ xR — R
and ja : 02 x R — R.

(H1) (i) = — ji(z,s) is measurable in ) for all s € R.

(ii) s~ ji(x,s) is locally Lipschitz in R for almost all z € Q.

(iii) There exists a constant ¢; > 0 such that for almost all z €  and for

all &1 € 9j1(x, s) it holds that
1] < er(1+ s

with 1 < g9 < p*, where p* is the Sobolev critical exponent

Np
. if p< N,
pP=qN-—-p

+00 if p> N.

(H2) (i) =+ jo(x, s) is measurable in O for all s € R.
(ii) s+ ja(z, s) is locally Lipschitz in R for almost all = € 9.
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(iii) There exists a constant ¢ > 0 such that for almost all z € 9Q and for
all & € 0ja(x, s) it holds that
2] < a1+ [s]"7H)

with 1 < g1 < ps, where p, is given by

(N-1p .

~ = if p<N,
Dx = N-—p

+00 if p> N.

(iv) Let u € WHP(Q). Then every & € Oja(x,u) satisfies the condition
[§s(z1) — Es(w2)| < Lizy — 22|,
for all 21,z in OQ with a € (0, 1].

Remark 2.1. Note that the conditions above imply that the functional J : WP (Q) —
R is locally Lipschitz (see [4] or [9, p. 313]). That guarantees, in particular, that
Clarke’s generalized gradient s — 0J(s) exists.

3. CY(Q) VERsus W1P(Q)
Our main result is the following.

Theorem 3.1. Let the conditions (H1) and (H2) be satisfied. If ug € W1P(Q) is
a local C*(Q)-minimizer of J, that is, there exists r1 > 0 such that

J(ug) < J(ug +h) for all h € CH(Q) with ||kl o1 gy < 71,
then ug is a local minimizer of J in WYP(Q), that is, there exists ro > 0 such that
J(uo) < J(ug + h) for all h € WHP(Q) with ||h|lw1.0q) < 7o
Proof. Let h € C*(Q) and let 8 > 0 small. Then we have

J(ug + Bh) — J(uo)
/B )

0<

which means that
0 < J°(ug; h) for all h € CH(Q).
The continuity of J°(ug;-) on WHP(Q) and the density of C*(Q) in W1P(Q) imply
0 < J°(up; h) for all h € WhP(Q).
Hence, we get
0 € 0J(up).

The inclusion above implies the existence of hy € L% (Q) with hy(z) € 871 (z, uo(z))
and hy € L% (99) with hy(z) € 8ja(x, y(uo(z))) satisfying 1/go + 1/¢) = 1 as well
as 1/q1 +1/¢} = 1 such that

/|Vu0|p72Vu0V<pd$+/ [uo|P~ 2ugpdx
@ @ (3.1)

+/ hipdx Jr/ hoypdo = 0, Yo € WHP(Q).
Q o
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Note that equation (3.1) is the weak formulation of the Neumann boundary value
problem

—APUO =—hy — |u0|p_2u0 in Q,
Guo _ . on 9Q,
v

where % means the outward pointing conormal and —A, is the negative p-

Laplacian. The regularity results in [16, Theorem 4.1 and Remark 2.2] along with
[12, Theorem 2] ensure the existence of o € (0,1) and M > 0 such that

up € CH*(Q) and [uollgr.a@) < M. (3.2)

In order to prove the theorem, we argue indirectly and suppose that the theorem
is not valid. Hence, for any € > 0 there exists y. € B(up) such that

J(ye) = min {J(y) : y € Beluo) p < J(uo), (3.3)
where B:(ug) = {y € W?(Q) : ||y — uo|lw1.»(0) < e}. More precisely, y solves

{min J(y)

RS BE(UO)7FE(y) = % (”y - UOH];VLP(Q) - Sp) <0.

The usage of the nonsmooth multiplier rule of Clarke in [5, Theorem 1 and Propo-
sition 13] yields the existence of a multiplier A. > 0 such that

0€e aj(ys) + AsFé(ys)'

This means that we find g; € L% () with g;(z) € 951 (2, y.(x)) as well as gy €
L% (0Q) with go(z) € 8j2(z, ¥(ye(x))) to obtain

/ Ve [P~ Vye Vipdz +/ |Ye "~ ?yepde +/ grpdz
Q Q Q

+/ g2ypdo + )\6/ IV (y= — u0)|P "2V (ye — uo)Vdz (3.4)

o9 Q
+ /\5/ lye — 0P (ye — uo)ipda =0,
Q

for all ¢ € WHP(Q). Next, we have to show that y. belongs to L>°()) and hence
to CLe(Q).

Case 1: A\. = 0 with ¢ € (0,1].
From (3.4) we see that y. solves the Neumann boundary value problem

—Apye = —g1 — |ya|p_2ya in €,
0
e _ —92 on 01},
ov

As before, the regularity results in [16] and [12] yield (3.2) for y..
Case 2: 0 < A\ <1 with ¢ € (0,1].
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Multiplying (3.1) with A. and adding (3.4) yields

/Q [Vye [PV Vodz + A /Q (Vo [P~2Vuo Vipda

2 [ 1900 = w0 P2V (e — wo)Vepda

= /Q(Ashl + g1+ Ae|uo|P2ug) pdx (3.5)
- /Q(Aslya — uoP "2 (ye — wo) + [y P 2ye ) pda

- / (Acha + g2)vedo.
1219}

With (3.5) in mind, we introduce the operator 7. : @ x RY — RY given by
To(x,€) = |72 + N HIP T2 H + \c|¢ — HIP*(€ — H),
where H(z) = Vug(z) and H € (C%(Q))Y for some o € (0,1]. It is clear that
T.(x,€) € C(Q x RV, RM). For €  we have
(T=(2,€), §)rw
= lel” + A€ = HP2(€ — H) = | = HIP"*(=H),§ = H — (~H))av  (3.6)
> |¢|P for all € € RY,

where (-, -)gn~ is the inner product in RY. The estimate (3.6) shows that 7. satisfies
a strong ellipticity condition. Hence, the equation in (3.5) is the weak formulation
of the elliptic Neumann boundary value problem

—divT(z, Vye)

=—(Ach1+ g1+ /\6(|u0|p_2u0 + |ye — u0|p_2(ye —up)) + |y£|p_2ye) in §,

Ov.

ov
Using again the regularity results in [16] in combination with (3.6) and the growth
conditions (H1)(iii) as well as (H2)(iii) proves y. € L>(£2). Note that

|DeTe(,€)| < by + bal€[P2, (3.7)
where by, by are some positive constants. We also obtain

(DeTe(, &)y, y)y
= P72y + (0 — 2)IEP (& v

+ A€~ HIP2ly[? + Ae(p — 2)[€ — HIPH(E — H,y)n
>{5w2m2 itp>2
T e-DlEPP? ifl<p<2
> min{1,p — 1P|y

= —(Ach2 + 92) on 0N2.

(3.8)

Because of (3.7) and (3.8), the assumptions of Lieberman in [12] are satisfied and
thus, Theorem 2 in [12] ensures the existence of a € (0,1) and M > 0, both
independent of € € (0, 1], such that

y. € CH*(Q) and lvellcra@ < M, forall e € (0,1]. (3.9
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Case 3: A\, > 1 with ¢ € (0,1].

Multiplying (3.1) with —1, setting v. = y. — ug in (3.4) and adding these new
equations yields

/ |V (up + v2)|P~2V (ug + v:)Vdz —/ | Vg |P~2VugVdr
Q Q

—|—)\€/ |V, P2V, Vdz
Q

(3.10)
= / (JuolP~%ug — |ve 4+ uo|P~2(ve + uo) — Ae|ve|P %0 ) pdx
Q
+ / (h1 = g1)edz +/ (h2 — g2)v¢0.
Q a0
Defining again
1 _ _ _
Te(w,€) = (1 + € (H + &) — [H[" 2 H) + [¢]72¢
€
and rewriting (3.10) yields the equation
—div T, (z, Vv,)
1 .
= )\—(|u0|p72uo — ve +ugP 72 (ve 4+ ug) — Ae|ve|P %0 +hy —g1)  in Q,
v 1
31/8 = r(hg - gg) on 0f).
€
As above, we have the following estimates:
(To(2,€), )an = €[ for all € € RV, (3.11)
|DeTe(2,6)| < ar + agf¢[P2, (3.12)
(D§T€(x7§)y7y)RN 2 mln{lap - 1}|€|p—2|y‘2’ (313)

with some positive constants aj,as. Due to (3.11) along with [16], we obtain
ve € L*(Q). The statements (3.12) as well as (3.13) allow us to apply again
the regularity results of Lieberman which implies the existence of o € (0,1) and
M > 0, both independent of e € (0,1], such that (3.9) holds for v.. Because of
Ye = Ve + up and (3.2), we obtain (3.9) in the case A\ > 1. Summarizing, we have
proved that y. € L>(Q) and y. € C1*(Q) for all € € (0, 1] with a € (0,1).

Let € | 0. We know that the embedding C1:%(Q) — C'(Q) is compact (cf. [11, p.
38] or [1, p. 11]). Hence, we find a subsequence y., of y. such that y., — ¥ in
C1(Q). By construction we have y., — ug in W1P(Q) which yields § = ug. So, for
n sufficiently large, say n > ng, we have

Ye, — UOHcl(ﬁ) <ry,
which provides
J(uo) < J(Ye,)- (3.14)
However, the choice of the sequence (y., ) implies
J(Ye,) < J(uo), ¥n > no

(see (3.3)) which is a contradiction to (3.14). This completes the proof of the
theorem. g
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