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Abstract. We consider a nonlinear Lienard-type system driven by a nonlin-

ear, nonhomogeneous differential operator and a maximal monotone map. On
the Carathéodory perturbation we do not impose any global growth condition.

Instead we employ a Hartman-type hypotheses. Using tools from fixed point

theory and the theory of operators of monotone type, we prove two existence
theorems.

1. Introduction

In 1960, Hartman [4], see also Hartman [5], proved that the semilinear Dirichlet
system

u′′(t) = f(t, u(t)) on T = [0, b], u(0) = u(b) = 0

with f : T × RN → RN being continuous, admits a solution provided that there
exists M > 0 such that

(f(t, x), x)RN ≥ 0 for all t ∈ T and for all x ∈ RN with |x| = M.

Later, Knobloch [6] extended the result to semilinear periodic systems under
the assumption that the vector field f : T × RN → RN is locally Lipschitz. More
recently, Mawhin [8] extended the results of Hartman and Knobloch to nonlinear
systems driven by the vector p-Laplacian and having a continuous vector field f :
T × RN → RN .

In this paper we go well beyond the aforementioned works and deal with the
following nonlinear system:

a (u′(t))
′
+
d

dt
∇G(u(t)) ∈ A(u(t)) + f(t, u(t)) for a.a. t ∈ T = [0, b],

u ∈ BC,
(1.1)

where we mean by u ∈ BC that u satisfies one of the following boundary conditions

• Dirichlet condition: u(0) = u(b) = 0;
• Neumann condition: u′(0) = u′(b) = 0;
• Periodic condition: u(0) = u(b), u′(0) = u′(b).

We will do the proof for the periodic problem and the same reasoning, in fact in
a simpler form, applies also to the other two boundary conditions.

In problem (1.1), the mapping a : RN → RN is a suitable homeomorphism, in
general nonhomogeneous, which includes many differential operators of interest as
special cases such as the vector p-Laplacian. For G we suppose G ∈ C2(RN ,R) and
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on the right-hand side of (1.1), A : RN → 2R
N

is a maximal monotone map and
f : T×RN → RN is a Carathéodory perturbation, that is, t→ f(t, x) is measurable
for all x ∈ RN and x→ f(t, x) is continuous for a.a. t ∈ T . We do not assume that
the domain of A is all of RN and this incorporates in our framework systems with
unilateral constraints, namely differential variational inequalities. Moreover, we do
not impose any global growth condition on the perturbation term f(t, ·). Instead
we employ the Hartman-type condition mentioned in the beginning of the paper.
The particular form of (1.1) classifies the problem as a nonlinear Lienard system,
see Hartman [5, p. 179].

Our approach uses tools from fixed point theory and from the theory of nonlinear
operators of monotone type.

2. Preliminaries and Hypotheses

Let X be a reflexive Banach space, let X∗ be its topological dual and denote by
〈·, ·〉 the duality brackets for the pair (X∗, X). We say that a map A : X → 2X

∗
is

monotone if

〈u∗ − x∗, u− x〉 ≥ 0 for all (u, u∗), (x, x∗) ∈ GrA,

where

GrA = {(v, v∗) ∈ X ×X∗ : v∗ ∈ A(v)}

denotes the graph of A. If A satisfies

〈u∗ − x∗, u− x〉 > 0 for all (u, u∗), (x, x∗) ∈ GrA with u 6= x,

then we say that A is strictly monotone. Finally we say that A : X → 2X
∗

is
maximal monotone if

〈u∗ − x∗, u− x〉 ≥ 0 for all (u, u∗) ∈ GrA implies (x, x∗) ∈ GrA.

This means that GrA is maximal with respect to inclusion among the graphs of all
monotone maps. By D(A) we denote the domain of A, that is,

D(A) = {u ∈ X : A(u) 6= ∅} .

For a maximal monotone map A we have that GrA is sequentially closed in Xw×X∗
and in X ×X∗w.

Now, let H be a Hilbert space. We identify H with its dual by the Fréchet-Riesz
theorem, that is, H = H∗. Let A : H → 2H be a maximal monotone map. For
λ > 0 we define the following single-valued maps

Resolvent of A: Jλ = (I + λA)
−1
,

Yosida approximation of A: Aλ =
1

λ
[I − Jλ].

The next proposition summarizes the main properties of these two operators.

Proposition 2.1. If A : H → 2H is a maximal monotone map and λ > 0, then
the following hold:

(a) Jλ : H → H is nonexpansive, that is ‖Jλ(u) − Jλ(x)‖ ≤ ‖u − x‖ for all
u, x ∈ H;

(b) Aλ(u) ∈ A(Jλ(u)) for all u ∈ H;
(c) Aλ is monotone and ‖Aλ(u)−A(x)‖ ≤ 1

λ‖u− x‖ for all u, x ∈ H;
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(d) ‖Aλ(u)‖ ≤ ‖A0(u)‖ = min {‖u∗‖ : u∗ ∈ A(u)} and Aλ(u)→ A0(u) as λ→
0+ for all u ∈ D(A);

(e) D(A) is convex and Jλ(u)→ proj
(
u;D(A)

)
for all u ∈ H.

Remark 2.2. The maximal monotonicity of A implies that A(u) ⊆ H is nonempty,
closed and convex for all u ∈ D(A). Therefore, the minimal norm element A0(u)

exists. Moreover, D(A) is convex and so the metric projection proj(·, D(A)) is well-
defined. For more about maps of monotone type we refer to Papageorgiou-Winkert
[9].

Suppose that V,Z are Banach spaces and let K : V → Z. We introduce the
following two notions:

• We say that K is completely continuous if

vn
w→ v in V implies K(vn)→ K(v) in Z.

• We say that K is compact if it is continuous and maps bounded sets in V
to relatively compact sets in Z.

From the fixed point theory, we will use the Leray-Schauder Alternative Principle
which says the following.

Theorem 2.3. If V is a Banach space, K : V → V is a compact map and

S = {v ∈ V : v = µK(v) for some 0 < µ < 1} ,

then one of the following two statements is true:

(a) S is unbounded;
(b) K has a fixed point.

By ρM : RN → RN with M > 0 with denote the map

ρM (u) =

{
u if |u| ≤M,
Mu
|u| if M < |u|,

for all u ∈ RN , where we denote by |u| the Euclidean norm of u for every u ∈ RN .
It is easy to see that the map ρm is nonexpansive.

For notational simplicity, we will write W 1,p with 1 < p < ∞ for the space
W 1,p((0, b),RN ) and by ‖ · ‖ we will denote the norm of W 1,p defined by

‖u‖ =
(
‖u‖pp + ‖u′‖pp

) 1
p for all u ∈W 1,p.

Given a function f : T × RN → RN we denote by Nf the Nemytskij operator
corresponding to f defined by

Nf (u)(·) = f(·, u(·)) for all u ∈W 1,p.

Now we introduce the hypotheses on the data of (1.1).

H(a): a : RN → RN is a strictly monotone, continuous map such that a(0) = 0,

a(y) = c(|y|)y for all y ∈ RN \ {0}

with a continuous function c : (0,+∞) → (0,+∞) and there exist c0 > 0
and 1 < p <∞ such that

c0|y|p ≤ (a(y), y)RN for all y ∈ RN .
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Remark 2.4. Evidently, a is maximal monotone. Furthermore, a is a homeo-
morphism onto RN and |a−1(y)| → +∞ as |y| → +∞. We stress that no growth
condition is imposed on a.

Example 2.5. The following maps satisfy hypotheses H(a):

• a(y) = |y|p−2y with 1 < p <∞,
• a(y) = |y|p−2y + |y|q−2y with 1 < q < p <∞,

• a(y) =
[
1 + |y|2

] p−2
2 y with 1 < p <∞,

• a(y) =
[
ce|y|

p

− 1
]
|y|p−2y with 1 < p <∞ and c > 1,

for all y ∈ RN . The first map corresponds to the vector p-Laplacian and the second
one to the vector (p, q)-Laplacian.

The assumptions on G read as follows:

H(G): G ∈ C2(RN ,R) and ∇G(x) = g0(|x|)x for all x ∈ RN with g0(r) > 0 for all
r > 0.

Remark 2.6. As mentioned before, we do not assume any global growth condition
on the function G.

Example 2.7. The following maps fulfill H(G):

• G(x) =
1

r
|x|r with 2 ≤ r <∞,

• G(x) =
1

r
|x|r +

1

q
|x|q with 2 ≤ q < r <∞,

• G(x) =
1

2

[
e|x|

2

− 1
]
,

for all x ∈ RN .

Finally, we can state our assumptions on A : RN → 2R
N

and f : T ×RN → RN .

H(A): A : RN → 2R
N

is a maximal monotone map with 0 ∈ A(0);
H(f): f : T × RN → RN is a Carathéodory function such that

(i) for every η > 0 there exists aη ∈ L2(T )+ such that

|f(t, x)| ≤ aη(t) for a.a. t ∈ T and for all |x| ≤ η;

(ii) there exists M > 0 such that

(f(t, x), x)RN ≥ 0

for a.a. t ∈ T and for all x ∈ RN with |x| = M .

3. Existence of Solutions

For h ∈ L1(T,RN ) we consider the following system

−a (u′(t))
′
+ |u(t)|p−2u′(t) = h(t) for a.a. t ∈ T,

u(0) = u(b), u′(0) = u′(b).
(3.1)

Proposition 3.1. If hypotheses H(a) hold, then problem (3.1) has a unique solution
K(h) ∈ C1(T,RN ) for every h ∈ L1(T,RN ).
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Proof. Note that ∫ b

0

[
h(t)− |u(t)|p−2u(t)

]
dt = 0.

The existence of a solutionK(h) ∈ C1(T,RN ) follows from Theorem 5.3 of Manásevich-
Mawhin [7]. The uniqueness of this solution is a consequence of the strict mono-
tonicity of the maps

RN 3 y → a(y) and RN 3 x→ |x|p−2x.
�

Remark 3.2. The above proposition is stated in a little more general form than
we will need it here. Indeed, it is enough to consider h ∈ L2(T,RN ), see hypothesis
H(f)(i). However, when D(A) = RN , then we can have aη ∈ L1(T )+ in hypothesis
H(f)(i) and so we use Proposition 3.1. For the Dirichlet problem, on account of
the Poincaré inequality, we consider instead of (3.1) the following problem

−a (u′(t))
′

= h(t) for a.a. t ∈ T,
u(0) = u(b) = 0.

Then, the existence and uniqueness of a solution K(h) ∈ C1(T,RN ) follows from
Theorem 5.1 of Manásevich-Mawhin [7].

Now we can define the solution map K : L1(T,RN ) → C1(T,RN ) and obtain
the following property of this map.

Proposition 3.3. If hypotheses H(a) hold, then K is completely continuous.

Proof. Let hn
w→ h in L1(T,RN ) and set un = K(hn) for all n ∈ N. We have for

n ∈ N
−a (u′n(t))

′
+ |un(t)|p−2un(t) = hn(t) for a.a. t ∈ T,

un(0) = un(b), u′n(0) = u′n(b).
(3.2)

We take the inner product with un(t), integrate over T = [0, b] and perform inte-
gration by parts. This leads to∫ b

0

(a(u′n), u′n)RNdt+ ‖un‖pp ≤ c1‖un‖ for some c1 > 0 and for all n ∈ N.

Taking hypotheses H(a) into account gives

c0‖u′n‖pp + ‖un‖pp ≤ c1‖un‖ for all n ∈ N.

Therefore, the sequence {un}n≥1 ⊆ W 1,p is bounded and since W 1,p ↪→ C(T,RN )
is compactly embedded, we conclude that

{un}n≥1 ⊆ C(T,RN ) is relatively compact. (3.3)

From (3.2) we have

a(u′n(t)) = a(u′n(0)) +

∫ t

0

[
hn(s)− |un(s)|p−2un(s)

]
ds (3.4)

for all t ∈ T and for all n ∈ N. This gives

u′n(t) = a−1
[
a(u′n(0)) +

∫ t

0

[
hn(s)− |un(s)|p−2un(s)

]
ds

]



6 N. S. PAPAGEORGIOU AND P.WINKERT

for all t ∈ T and for all n ∈ N. If

kn(t) =

∫ t

0

[
hn(s)− |un(s)|p−2un(s)

]
ds

for n ∈ N, then {kn}n∈N ⊆ C(T,RN ) is bounded. Moreover, note that
∫ t
0
u′n(t)dt =

0 for n ∈ N. Therefore, Lemma 3.1 of Manásevich-Mawhin [7] implies that

{a(un(0))}n∈N ⊆ RN is bounded.

Then, from (3.4) and the Arzela-Ascoli theorem, we infer that

{a(u′n(·))}n∈N ⊆ C(T,RN ) is relatively compact. (3.5)

Let â−1 : C(T,RN )→ C(T,RN ) be defined by

â−1(u)(·) = a−1(u(·)) for all u ∈ C(T,RN ).

Evidently, â−1 is continuous and bounded, that is, it maps bounded sets to bounded
sets. Hence, from (3.5) we have

{u′n}n∈N ⊆ C(T,RN ) is relatively compact. (3.6)

From (3.3) and (3.6) it follows that

{un}n∈N ⊆ C1(T,RN ) is relatively compact.

We may assume, at least for a subsequence, that

un → u in C1(T,RN ). (3.7)

We have ∫ b

0

(a(u′n), v′)RNdt+

∫ b

0

|un|p−2(un, v)RNdt =

∫ b

0

(hn, v)RNdt (3.8)

for all v ∈W 1,p and for all n ∈ N. From (3.7) and the continuity of a, we obtain

|a(u′n(t))| ≤ c2
for some c2 > 0, for all t ∈ T and for all n ∈ N. So, if we pass to the limit in (3.8)
as n→∞, then one has∫ b

0

(a(u′), v′)RNdt+

∫ b

0

|u|p−2(u, v)RNdt =

∫ b

0

(h, v)RNdt

for all v ∈W 1,p. Hence, u = K(h).
Therefore, we obtain for the original sequence that

un = K(hn)→ K(h) = u in C1(T,RN ),

which shows that K : L1(T,RN )→ C1(T,RN ) is completely continuous. �

Remark 3.4. In particular, we obtain that K : L2(T,RN ) → C1(T,RN ) is com-
pletely continuous and then, due to the reflexivity of L2(T,RN ), we have that K is
compact, see Papageorgiou-Winkert [9, Proposition 3.7.7].

For every λ > 0, let Âλ : W 1,p → L2(T,RN ) be defined by Âλ(u)(·) = Aλ(u(·)).
In fact, Âλ is L∞(T,RN )-valued. Then, let Nλ : W 1,p → L2(T,RN ) be defined by

Nλ(u) = −Âλ(u)−Nf (ρM (u)) + |ρM (u)|p−2ρM (u) +∇G(ρM (u)).

The following proposition is an immediate consequence of the properties of Aλ, see
Proposition 2.1, and of the hypotheses H(G) and H(f).



NONLINEAR SYSTEMS WITH HARTMAN-TYPE PERTURBATIONS 7

Proposition 3.5. If hypotheses H(A), H(G) and H(f) hold, then Nλ : W 1,p →
L2(T,RN ) is continuous.

From Propositions 3.3 and 3.5 we easily conclude that the map K ◦Nλ : W 1,p →
W 1,p is compact. We define

Sλ =
{
u ∈W 1,p : u = µ(K ◦Nλ)(u), 0 < µ < 1

}
.

Proposition 3.6. If hypotheses H(a), H(A), H(G), H(f) hold and λ > 0, then
Sλ ⊆W 1,p is bounded.

Proof. Let u ∈ Sλ. Then 1
µu = K(Nλ(u)) and so

− a
(

1

µ
u′
)′

+
1

µp−1
|u|p−2u

= −Âλ(u)−Nf (ρM (u)) + |ρM (u)|p−2ρM (u) +
d

dt
∇G(ρM (u))

(3.9)

with u(0) = u(b) and u′(0) = u′(b).
Claim: |u(t)| ≤M for all t ∈ T
Let r(t) = 1

2 |u(t)|2 for all t ∈ T . Then we can find t0 ∈ T such that r(t0) =
maxT r. Arguing by contradiction, suppose that

r(t0) >
1

2
M2.

First we assume that t0 ∈ (0, b). Then

r′(t0) = (u′(t0), u(t0))RN = 0. (3.10)

Let t1 ∈ [0, t0) be such that |u(t1)| = M and |u(t)| > M for all (t1, t0]. Then

− a
(

1

µ
u′(t)

)′
+

1

µp−1
|u(t)|p−2u(t)

= −Âλ(u(t))− f(t, ρM (u(t))) + |ρM (u(t))|p−2ρM (u(t)) +
d

dt
∇G(ρM (u(t)))

for a.a. t ∈ T . This implies

− d

dt

(
a

(
1

µ
u′(t)

)
, u(t)

)
RN

+

(
a

(
1

µ
u′(t)

)
, u′(t)

)
RN

+
1

µp−1
|u(t)|p

= − (Aλ(u(t)), u(t))RN −
|u(t)|
M

(f(t, ρM (u(t))), ρM (u(t)))RN

+ |u(t)|Mp−1 +

(
d

dt
∇G(ρM (u(t))), u(t)

)
RN

(3.11)

for a.a. t ∈ [t1, t0]. Since Aλ is maximal monotone, see Proposition 2.1, and Aλ(0) =
0, see hypotheses H(a), we have

− (Aλ(u(t)), u(t))RN ≤ 0 for all t ∈ T. (3.12)

Furthermore, taking hypothesis H(f)(ii) into account, we obtain

−|u(t)|
M

(f(t, ρM (u(t))), ρM (u(t)))RN ≤ 0 for all t ∈ [t1, t0]. (3.13)
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Finally, applying hypotheses H(G), we have(
d

dt
∇G(ρM (u(t))), u(t)

)
RN

=
|u(t)|
M

(
d

dt
∇G(ρM (u(t))), ρM (u(t))

)
RN

=
|u(t)|
M

[
d

dt
(∇G(ρM (u(t))), ρM (u(t)))RN

−
(
∇G(ρM (u(t))),

d

dt
ρM (u(t))

)
RN

]
=
|u(t)|
dt

[
d

dt

(
g0(M)M2

)
− g0(M)

d

dt
|ρM (u(t))|2

]
= 0

(3.14)

for all t ∈ [t1, t0]. We return to (3.11) and apply (3.12), (3.13), (3.14) and hypothe-
ses H(a). This gives

|u(t)|
[

1

µp−1
|u(t)|p−1 −Mp−1

]
≤ d

dt

(
a

(
1

µ
u′(t)

)
, u(t)

)
RN

for a.a. t ∈ (t1, t0] and so, since 0 < µ < 1,

0 <
d

dt

(
a

(
1

µ
u′(t)

)
, u(t)

)
RN

for a.a. t ∈ (t1, t0].

Therefore, the function

t→
(
a

(
1

µ
u′(t)

)
, u(t)

)
RN

is strictly increasing on (t1, t0]. Hence, we have(
a

(
1

µ
u′(t)

)
, u(t)

)
RN

<

(
a

(
1

µ
u′(t0)

)
, u(t0)

)
RN

for all t ∈ (t1, t0).

Based on hypotheses H(a) and (3.10) we obtain

c

(
1

µ
|u′(t)|

)
(u′(t), u(t))RN < c

(
1

µ
|u′(t0)|

)
(u′(t0), u(t0))RN = 0.

Thus, r′(t) < 0 for all t ∈ (t1, t0).
Finally we have

M2 < r(t0) < r(t1) = M2,

a contradiction.
If t0 = 0 or t0 = b, then r(0) = r(b) and r′(0) ≤ 0 ≤ r′(b). But

r′(t) = (u′(t), u(t))RN for all t ∈ T,

which implies r′(0) = r′(b) = 0 and so the previous argument applies. This proves
the Claim.

Next we act on (3.9) with u, perform integration by parts and use hypotheses
H(a), H(G), H(f)(i) and the Claim. This gives

1

µp−1

[
c0 ‖u′‖

p
p + ‖u‖pp

]
≤ c3 for some c3 > 0 and for all u ∈ S.

Recall that 0 < µ < 1, we see that S ⊆W 1,p is bounded. �
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For λ > 0 we consider the following approximation to problem (1.1)

a (u′(t))
′
+
d

dt
∇G(u(t)) = Aλ(u(t)) + f(t, u(t)) for a.a. t ∈ T = [0, b],

u(0) = u(b), u′(0) = u′(b).
(3.15)

Proposition 3.7. If hypotheses H(a), H(G), H(A), H(f) hold and let λ > 0, then
problem (3.15) has a unique solution ûλ ∈ C1(T,RN ).

Proof. The compactness of K ◦Nλ : W 1,p →W 1,p and Proposition 3.6 permit the
use of the Leray-Schauder Alternative Principle stated as Theorem 2.3. So, there
exists ûλ ∈W 1,p such that

û = (K ◦Nλ) (ûλ) .

This gives

ûλ ∈ C1(T,RN ) and |ûλ(t)| ≤M for all t ∈ T,

see the proof of Proposition 3.6. Then ρM (ûλ(t)) = ûλ(t) and so we conclude that
ûλ ∈ C1(T,RN ) is a solution of (3.15), see (3.9) with µ = 1. �

Let a : L2(T,RN )→ 2L
2(T,RN ) be defined by

a(u) =
{
ϑ ∈ L2(T,RN ) : ϑ(t) ∈ A(u(t)) for a.a. t ∈ T

}
.

Since 0 ∈ A(0) we see that D(a) 6= ∅. From Brézis [2, p. 21] we have the following
result.

Proposition 3.8. If hypotheses H(A) hold, then a is maximal monotone.

Now we are ready to produce a solution for problem (1.1).

Theorem 3.9. If hypotheses H(a), H(G), H(A), H(f) hold, then problem (1.1) has
a solution û ∈ C1(T,RN ).

Proof. Let λn → 0+ and let ûn = ûλn
∈ C1(T,RN ) for n ∈ N be a solution of

(3.15) based on Proposition 3.7. From the proof of Proposition 3.6, see the Claim
in that proof, we have

|ûn(t)| ≤M for all t ∈ T and for all n ∈ N. (3.16)

From (3.15) it follows that∫ b

0

(a (â′n) , û′n)RN dt ≤
∫ b

0

|f (t, ûn)|Mdt+

∫ b

0

∣∣∣∣ ddt∇G (ûn)

∣∣∣∣Mdt,

where we recall that Aλn
is monotone, Aλn

(0) = 0 and see (3.16). Applying
hypotheses H(a), H(G) and H(f)(i) leads to

c0 ‖û′n‖
p
p ≤ c3 for some c3 > 0 and for all n ∈ N.

Therefore, the sequence {û′n}n∈N ⊆ Lp(T,RN ) is bounded and so it is {ûn}n∈N ⊆
W 1,p, see (3.16). So, by passing to a subsequence if necessary, we can say that

ûn
w→ û in W 1,p and ûn → û in C(T,RN ).
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Now we take the inner product with Aλn
(ûn(t)) in (3.15) and integrate over T =

[0, b]. After integration by parts and by applying hypotheses H(G), H(f)(i) and
(3.16), we obtain∫ b

0

(
a (û′n) ,

d

dt
Aλn

(un)

)
RN

dt+ ‖Aλn
(un)‖22 ≤ c4 ‖Aλn

(un)‖2 (3.17)

for some c4 > 0 and for all n ∈ N.
The map x → Aλn

(x) for n ∈ N is Lipschitz continuous from RN into RN . So,
by the Rademacher theorem, see Evans-Gariepy [3, p. 81], we know that Aλn is
differentiable at all x ∈ RN \Dn with |Dn|N = 0, where | · |N denotes the Lebesgue
measure on RN . Then, since Aλn

is monotone, we have for all x ∈ RN \ Dn and
for every h ∈ RN , (

Aλn(x+ τh)−Aλn(x)

τ
, h

)
RN

≥ 0.

This implies (
A′λn

(x)h, h
)
RN ≥ 0. (3.18)

Then, from the chain rule for Sobolev functions, see Papageorgiou-Winkert [9,
Theorem 4.5.18], we have

d

dt
Aλn

(ûn(t)) = A′λn
(ûn(t)) û′n(t) for a.a. t ∈ T. (3.19)

Applying (3.19), hypotheses H(a) and (3.18) gives∫ b

0

(
a (û′n(t)) ,

d

dt
Aλn

(ûn)

)
RN

dt

=

∫ b

0

(
a (û′n(t)) , A′λn

(ûn) û′n
)
RN dt

=

∫ b

0

c (|û′n|)
(
û′n, Âλn

(un)ûn

)
RN

dt ≥ 0.

Returning to (3.17) and using (3.19) we obtain

‖Aλn
(un)‖22 ≤ c4 ‖Aλn

(un)‖2 for all n ∈ N,

which shows that{
Âλn(un)

}
n∈N

= {Aλn(un(·))}n∈N ⊆ L
2(T,RN ) is bounded.

So, we may assume that

Âλn (ûn)
w→ y in L2(T,RN ). (3.20)

From (3.15) we have

u′n(t)

= a−1
(
a(u′n(0)) +

∫ t

0

[
Aλn (ûn(s)) + f (s, ûn(s))− d

dt
∇G (ûn(s))

]
ds

)
(3.21)

for all n ∈ N. We set

gn(t) =

∫ t

0

[
Aλn

(ûn(s)) + f (s, ûn(s))− d

dt
∇G (ûn(s))

]
ds
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for all t ∈ T and for all n ∈ N. The Arzela-Ascoli theorem implies that

{gn}n∈N ⊆ C(T,RN ) is relatively compact.

Therefore, invoking Lemma 3.1 of Manásevich-Mawhin [7], we infer that

{a(u′n(0))}n≥1 ⊆ RN is relatively compact.

Recall that the map â−1 : C(T,RN )→ C(T,RN ) defined by â−1(u)(·) = a−1(u(·))
is continuous. Thus, from (3.21) it follows that

{û′n}n∈N ⊆ C(T,RN ) is relatively compact

and because of the compact embedding W 1,p ↪→ C(T,RN ),

{ûn}n∈N ⊆ C
1(T,RN ) is relatively compact.

So, we have

ûn → û in C1(T,RN ). (3.22)

In the limit as n→∞, we obtain

−
∫ b

0

(a (û′) , v′)RN dt+

∫ b

0

(
d

dt
∇G (û) , v

)
RN

dt

=

∫ b

0

(y, v)RNdt+

∫ b

0

(f (t, û) , v)RN dt for all v ∈W 1,p,

see (3.20) and (3.22). Therefore,

a (û′(t))
′
+
d

dt
∇G(û(t)) = y(t) + f(t, û(t)) for a.a. t ∈ T,

û(0) = û(b), û′(0) = û′(b).

We will be done if we can show that y(t) ∈ A(û(t)) for a.a. t ∈ T .

Let Ĵλn(ûn)(·) = Jλn(ûn(·)) for all n ∈ N. From Proposition 2.1 and the chain

rule for Sobolev functions we have that Ĵλn
(ûn) ∈W 1,2 for all n ∈ N and{

Ĵλn (ûn)
}
n∈N
⊆W 1,2 is bounded.

So, we may assume that Ĵλn
(ûn)

w→ w in W 1,2 and because of the compact embed-
ding W 1,2 ↪→ C(T,RN ),

Ĵλn
(ûn)→ w in C(T,RN ). (3.23)

We know that

Ĵλn
(ûn) + λ̂nÂλn

(ûn) = ûn for all n ∈ N,

which implies w = û, see (3.23) and (3.22). Also, from (3.23) we see that

Ĵλn
(ûn)→ û in C(T,RN ). (3.24)

Moreover, we have

Âλn
(un) ∈ a

(
Ĵλn

(un)
)

for all n ∈ N, (3.25)

see Proposition 2.1. From Proposition 3.7 we know that a is maximal monotone.
So, the graph of a is sequentially closed in L2(T,RN )× L2(T,RN )w. From (3.20),
(3.24) and (3.25) we have y ∈ a(û). This means that

y(t) ∈ A (û(t)) for a.a. t ∈ T.
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Therefore, û ∈ C1(T,RN ) is a solution of problem (1.1). �

When D(A) = RN we can avoid the approximation by problem (3.15) and can
also relax a little hypothesis H(f)(i).

Now, the hypotheses on the map A are the following.

H(A)’: A : RN → 2R
N

is a maximal monotone map such that D(A) = RN and
0 ∈ A(0).

Remark 3.10. In this case we know that A has nonempty, compact and convex
values and as a multifunction it is upper semicontinuous from RN into RN , see
Papageorgiou-Winkert [9, Proposition 6.1.13].

The more general conditions on the perturbation f : T × RN → RN read as
follows.

H(f)’: f : T × RN → RN is a Carathéodory function such that
(i) for every η > 0 there exists aη ∈ L1(T )+ such that

|f(t, x)| ≤ aη(t) for a.a. t ∈ T and for all |x| ≤ η;

(ii) same as hypothesis H(f)(ii).

The method of the proof remains the same. Only since we work directly on the
inclusion problem (1.1) and do not pass first from its single-valued approximation
(3.15), we do not use Theorem 2.3, but its multivalued counterpart due to Bader
[1]. Then we can have the following existence theorem.

Theorem 3.11. If hypotheses H(a), H(G), H(A)’ and H(f)’ hold, then problem
(1.1) admits a solution û ∈ C1(T,RN ).
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[7] R. Manásevich, J. Mawhin, Boundary value problems for nonlinear perturbations of vector

p-Laplacian-like operators, J. Korean Math. Soc.37 (2000), no. 5, 665–685.
[8] J. Mawhin, Some boundary value problems for Hartman-type perturbations of the ordinary

vector p-Laplacian, Nonlinear Anal.40 (2000), no. 1-8, 497–503.

[9] N. S. Papageorgiou, P. Winkert, “Applied Nonlinear Functional Analysis. An Introduction”,

De Gruyter, Berlin, 2018.

(N. S. Papageorgiou) National Technical University, Department of Mathematics, Zo-
grafou Campus, Athens 15780, Greece

Email address: npapg@math.ntua.gr

(P. Winkert) Technische Universität Berlin, Institut für Mathematik, Straße des

17. Juni 136, 10623 Berlin, Germany

Email address: winkert@math.tu-berlin.de


	1. Introduction
	2. Preliminaries and Hypotheses
	3. Existence of Solutions
	References

