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Abstract. In this paper we study the fractional Schrödinger-Poisson system{
ε2s(−∆)su+ V (x)u = ϕ|u|2∗s−3u+ |u|2∗s−2u, x ∈ R3,

ε2s(−∆)sϕ = |u|2∗s−1, x ∈ R3,

where s ∈ (0, 1), ε > 0 is a small parameter, 2∗s = 6
3−2s

is the critical Sobolev exponent

and V ∈ L
3
2s (R3) is a nonnegative function which may be zero in some regions of R3, e.g.,

it is of the critical frequency case. By virtue of a new global compactness lemma, and the

Lusternik-Schnirelmann category theory, we relate the number of bound state solutions with

the topology of the zero set where V attains its minimum for small values of ε.

1. Introduction and main results

This paper deals with the following fractional Schödinger-Poisson system with doubly critical
growth and critical frequency of the form{

ε2s(−∆)su+ V (x)u = ϕ|u|2∗s−3u+ |u|2∗s−2u, x ∈ R3,

ε2s(−∆)sϕ = |u|2∗s−1, x ∈ R3,
(1.1)

where ε > 0 is a parameter, s ∈ (0, 1) and 2∗s = 6
3−2s denotes the critical Sobolev exponent.

Here, the fractional Laplacian operator (−∆)s is defined as

(−∆)sw(x) = Cs P.V.

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dy, w ∈ S(R3),

where P.V. stands for the Cauchy principal value, Cs is a normalizing constant and S(R3) is the
Schwartz space of rapidly decaying functions. In (1.1), the first equation is a nonlinear fractional
Schrödinger equation introduced by Laskin [29] which appeared in fractional quantum mechanics
in the study of particles on stochastic fields modeled by Lévy processes, see Laskin [28], in which
the potential satisfies a nonlinear fractional Poisson equation. For this reason, system (1.1) is
called a fractional Schrödinger-Poisson system, also known as the fractional Schrödinger-Maxwell
system, as a model describing solitary waves for the nonlinear stationary fractional Schrödinger
equation interacting with the electrostatic field, which arises in many mathematical physics
context and which is not only a physically relevant generalization of the classical NLS but also
an important model in the study of fractional quantum mechanics. It is worth pointing out that
the fractional Laplace operator (−∆)s becomes the classical Laplace operator −∆ as s → 1−,
see Proposition 4.4 of Di Nezza-Palatucci-Valdinoci [18]. From a probabilistic point of view, the
fractional Laplace operator could be viewed as the infinitesimal generator of a Lévy process, see,
for example, Applebaum [5] and Bertoin [8]. This operator arises in the description of various
phenomena in applied sciences, such as plasma physics (see Kurihura [27]), flame propagation
(see Caffarelli-Roquejoffre-Sire [10]), financial (see Cont-Tankov [17]), anomalous diffusion (see
Metzler-Klafter [37]), obstacle problems (see Silvestre [47]), conformal geometry, and minimal
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surfaces (see Chang-González [15]). For more details on fractional Laplacian operators we refer
the readers to Di Nezza-Palatucci-Valdinoci [18], Molica Bisci-Rădulescu-Servadei [38] and the
references therein.

Note that, even if s = 1, (1.1) reduces to the following classical Schödinger-Poisson system
with nonlocal critical term{

−ε2∆u+ V (x)u− ϕ|u|3u = f(u) + |u|4u, x ∈ R3,

−ε2∆ϕ = |u|5, x ∈ R3,
(1.2)

which was of interest to a number of authors. Indeed it can be used as a model to describe
the interaction between a charge particle interacting with the electromagnetic field, and also in
semiconductor theory, in nonlinear optics and in plasma physics. We refer to Li-Li-Shi [30, 31]
for more details in the physics aspects. In 2020, Feng [19] considered (1.2) with f ∈ C(R,R)
being subcritical growth and V ∈ C(R3,R) satisfying the global condition

(V) V∞ = lim inf
|x|→∞

V (x) > V0 = inf
x∈R3

V (x) > 0.

This condition was first introduced by Rabinowitz [44]. By employing the concentration-
compactness principle and the mountain pass theorem, Feng [19] proved the existence of positive
ground state solutions under condition (V) and under some appropriate subcritical growth con-
ditions on the nonlinearity f . Almost at the same time, Feng [20] revisited problem (1.2) (with
ε = 1), when the potential V is neither coercive nor periodic and asymptotic periodic. Based on
the modified concentration-compactness principle and the mountain pass theorem the existence
of ground state solution has been shown.

There are also some papers concerning the Schrödinger-Poisson system with nonlocal critical
term, but without the Sobolev critical term |u|4u. Li-Li-Shi [30, 31] studied the existence of
positive solutions to the following Schrödinger-Poisson-type system with nonlocal critical term{

−∆u+ bu+ qϕ|u|3u = f(x, u), x ∈ R3,

−∆ϕ = |u|5, x ∈ R3,
(1.3)

whereby the proofs are using variational methods which do not require any compactness con-
ditions. Moreover, Guo [23] obtained two positive solutions of (1.3) if b = 0, q = −1 and f
is a sublinear term of the form λQ(x)|u|p−2u by applying the Nehari manifold and variational
methods. In [35], Liu investigated the following Schrödinger-Poisson-type system{

−∆u+ V (x)u−K(x)ϕ|u|3u = f(x, u), x ∈ R3,

−∆ϕ = K(x)|u|5, x ∈ R3,
(1.4)

and obtained the existence of positive solutions by using the mountain pass theorem and the
concentration-compactness principle. Furthermore, Li-He [34] studied the existence and mul-
tiplicity of semiclassical state solutions for (1.4) by using variational methods along with the
Lusternik-Schnirelmann category theory.

From another perspective, systems (1.2), (1.3) and (1.4) can be rewritten as the following
Choquard-type equation

−ε2∆u+ V (x)u = ε−α(Iα ∗ F (u))f(u) + h(u), x ∈ RN , (1.5)

which was introduced as an approximation to the Hartree-Fock theory of one component plasma,
where Iα stands for the Riesz potential. Such a class of equations was already proposed by Pekar
in 1954 in [41] to study the quantum theory of a polaron at rest. Later, by using symmetry
decreasing rearrangement inequalities, Lieb [32] investigated the existence and uniqueness for
a class of nonlinear Choquard equation. Recently, Cassani-Zhang [12] showed the existence
and concentration behavior of ground state solutions for equation (1.5). Under appropriate
conditions on α and f , Alves-Yang [1] presented a new concentration behavior of solutions for
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(1.5) through variational methods. By means of a new nonlocal penalization technique, Moroz-
Van Schaftingen [39] proved that (1.5) admits a family of solutions concentrating to the local
minimum of V .

Note that in the aforementioned Schrödinger-Poisson systems in (1.2)-(1.4), the second equa-
tion has a nonlocal critical growth in the sense of the Hardy-Littlewood-Sobolev inequality. On
the other hand, the following classical Schrödinger-Poisson system{

−∆u+ V (x)u+K(x)ϕu = f(x, u), x ∈ R3,

−∆ϕ = K(x)u2, x ∈ R3,
(1.6)

with the Poisson equation being square growth, has been studied extensively by many authors
over the past decades. As a model describing the interaction of a charge particle with an electro-
magnetic field, it arises in many mathematical physics context, see, for example, Benci-Fortunato
[7]. The existence and multiplicity of solutions for the Schrödinger-Poisson system (1.6) under
variant assumptions on V,K and f has been widely investigated by numerous authors, which
have been developed many effective methods to study equations or systems with nonlocal terms.
We refer the readers to works of Ambrosetti [2], Ambrosetti-Ruiz [3], Azzollini-d’Avenia-Vaira
[6], Cerami-Vaira [13], Ruiz [45], Wang-Chen-Liao [49], Zhang-Ma-Xie [54] and the references
cited therein.

For the case s ∈ (0, 1), only few recent papers considered the fractional Schrödinger-Poisson
system like (1.1). It is a fundamental equation in fractional quantum mechanics in the study of
particles on stochastic fields modeled by Lévy processes, see Caffarelli-Silvestre [11] and Laskin

[28, 29]. Zhang-do Ó-Squassina [53] considered, by using a perturbation approach, the existence
and the asymptotical behaviors of positive solutions to the fractional Schrödinger-Poisson system{

(−∆)su+ V (x)u+K(x)ϕu = f(x, u), x ∈ R3,

(−∆)tϕ = K(x)u2, x ∈ R3.
(1.7)

with V (x) = 0, a parameter K(x) = λ > 0, and a general subcritical or critical nonlinearity f .
Teng [48] studied the existence of ground state solutions of (1.7) with K(x) = 1 and f(x, u) =
µ|u|q−1u + |u|2∗s−2u, q ∈ (2, 2∗s), by using the Pohozaev-Nehari manifold, the monotonic trick
and the global compactness lemma. For further results on the existence and multiplicity of
semiclassical bound states of (1.7), we refer to Liu-Zhang [36], Murcia-Siciliano [40] and Yang-
Yu-Zhao [52], see also the papers of Ambrosio [4], Chen-Li-Peng [16], Ghimenti-Van Schaftingen
[22], Guo-Li [24], Zhang-Zhang [55] and the references therein.

Recently, Qu-He [43] studied the following fractional Schrödinger-Poisson system with doubly
critical growth {

ε2s(−∆)su+ V (x)u = ϕ|u|2∗s−3u+ |u|2∗s−2u+ f(u), x ∈ R3,

ε2s(−∆)sϕ = |u|2∗s−1, x ∈ R3,
(1.8)

and showed the existence and multiplicity of concentrating solutions by using the Nehari mani-
fold and the Lusternik-Schnirelmann category theory. In 2021, He [25] obtained a mountain pass
solution to (1.8) (if ε = 1) with the help of the concentration-compactness principle. Feng-Yeng
[21] considered a class of fractional Schrödinger-Poisson type systems with doubly critical terms{

(−∆)su+ V (x)u− ϕ|u|2
∗
s−3u = K(x)|u|2

∗
s−2u, x ∈ R3,

(−∆)sϕ = |u|2∗s−1, x ∈ R3,
(1.9)

where s ∈ ( 34 , 1), V ∈ L
3
2s (R3), K ∈ L∞(R3) and infx∈R3 K(x) = K0 > 0. By applying the

concentration-compactness principle and variational methods, the authors derived the existence
of one ground state solution to the system (1.9). We remark that the novelty of (1.8) and
(1.9) is the fact that the second equation has nonlocal critical growth and is driven by the
nonlocal operator (−∆)s, which makes the study of problem (1.8) and (1.9) more interesting
and challenging. As we already observed, the previous results on the existence and multiplicity
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of solutions for systems (1.8) and (1.9) were mainly focused on the existence of ground state
solutions under the condition (V). A natural question arisen spontaneously is that, whether or
not it admits multiple high energy solutions for (1.9) with critical frequency, that is, V (·) ≥ 0,
V ̸≡ 0 on R3, and doubly critical growth. This is still an open problem and the purpose of
this paper is to fill this gap. To be more precise, we would like to establish the existence and
multiplicity of bound state solutions to (1.1) when V is of critical frequency case.

Throughout this paper, we suppose that V satisfies the following assumptions:

(V1) V ∈ L
3
2s (R3) and V (·) ≥ 0 on R3;

(V2) the set M = {x ∈ R3 : V (x) = 0} is nonempty and bounded.

Based on the assumptions on V (·) above, it is easy to verify that the following equation can be
seen as the limit equation of (1.1):{

ε2s(−∆)su− ϕ|u|2∗s−3u = |u|2∗s−2u, x ∈ R3,

ε2s(−∆)sϕ = |u|2∗s−1, x ∈ R3.
(1.10)

In the sequel, for each ε > 0, we define the energy functionals associated to (1.1) and (1.10) by
Jε and Jε,∞, respectively,

Jε(u) =
ε2s

2

∫
R3

|(−∆)
s
2u|2dx+

1

2

∫
R3

V (x)|u|2dx− ε−2s

2(2∗s − 1)

∫
R3

ϕu|u|2
∗
s−1dx− 1

2∗s

∫
R3

|u|2
∗
sdx,

and

Jε,∞(u) =
ε2s

2

∫
R3

|(−∆)
s
2u|2 dx− ε−2s

2(2∗s − 1)

∫
R3

ϕu|u|2
∗
s−1 dx− 1

2∗s

∫
R3

|u|2
∗
s dx,

where ϕu is given in (2.1). Furthermore, we introduce the Nehari manifold associated to Jε, Jε,∞,
respectively, as

Nε =
{
u ∈ Ds,2(R3) \ {0} : J ′

ε(u)u = 0
}
, N∞

ε =
{
u ∈ Ds,2(R3) \ {0} : J ′

ε,∞(u)u = 0
}
.

For every ε > 0, we define the infimum

mε := inf
u∈Nε

Jε(u) and m∞
ε := inf

u∈Nε,∞
Jε,∞(u).

If Y is a closed set of a topological spaceX, we denote by catX(Y ) the Lusternik-Schnirelmann
category of Y in X, namely the least number of closed and contractible sets in X which cover
Y. For any fixed µ > 0, denote Mµ = {x ∈ R3 : dist(x,M) ≤ µ}. Now, our main result can be
formulated as follows.

Theorem 1.1. Let s ∈ ( 12 , 1) and suppose that the conditions (V1), (V2) are satisfied. Then,
the following properties hold:

(i) mε = m∞
ε and mε is not achieved, for each ε > 0.

(ii) For any fixed µ > 0, there exist εµ > 0 such that for any ε ∈ (0, εµ), system (1.1)
possesses at least catMµ(M) bound states in Ds,2(R3).

The proof of Theorem 1.1 is of variational character. From a technical perspective, the
characteristics of the double non-localities from nonlocal critical convolution term ϕu|u|2

∗
s−3u

and the Sobolev critical term |u|2∗s−2u in system (1.1) make it more complicated to deal with the
convergence of (PS)-sequences, due to the lack of compactness for the embedding Ds,2(R3) ↪→
L2∗s (R3). Moreover, it is difficult to check the (PS)c-condition since the nodal solutions of (1.1)
no longer has the double energy properties, as we know the energy doubling characteristic plays
a key role in proving the main results, see, for example, Chen-Li-Peng [16], Qu-He [42] and
Zhang-Zhang [55]. In order to overcome these difficulties, we shall employ some ideas from Qu-
He [43] and establish a new global compactness lemma in the fractional case and some estimates
become more subtle and delicate to be established. We shall construct two barycenter functions
and use the Lusternik-Schnirelmann category theory to obtain the desired results. As far as
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we know, the multiplicity of high energy solutions for system (1.1) has not been studied in the
literature.

The paper is organized as follows: In Section 2 we give some preliminary results while in
Section 3, we introduce the corresponding limit problem and prove some useful lemmas. In
Section 4, we present a new global compactness lemma which describes the behavior of (PS)-
sequences and we regain the compactness if the functional energy lies in a suitable interval. In
Section 5, we first define two barycenter functions and give some necessary estimates. Then, we
give the proof of Theorem 1.1 by means of the Lusternik-Schnirelmann category theory.

2. Notations and preliminary results

To begin with, we present some notations which will be used throughout this paper. First,
we denote by C,Ci > 0, i = 1, 2, · · · , different positive constants whose values may vary from
line to line and are not essential to the proofs of our results. We denote by Lp = Lp(R3) for

p ∈ (1,∞] the Lebesgue spaces with the standard norm ∥u∥p =
(∫

R3 |u|p dx
) 1

p .

We recall that the fractional Sobolev space Ds,2(R3) is defined as

Ds,2(R3) =

{
u ∈ L2∗s (R3) :

∫
R3

|(−∆)
s
2u|2 dx <∞

}
,

equipped with the norm

∥u∥2 :=

∫
R3

|(−∆)
s
2u|2 dx =

∫∫
R6

|u(x)− u(y)|2

|x− y|3−2s
dxdy,

see Di Nezza-Palatucci-Valdinoci [18] and Molica Bisci-Rădulescu-Servadei [38]. The Sobolev
embedding Ds,2(R3) ↪→ L2∗s (R3) is continuous and the best constant S is given by

S = inf
u∈Ds,2(R3)\{0}

∫
R3 |(−∆)

s
2u|2 dx(∫

R3 |u|2∗s dx
) 2

2∗s

,

see Servadei-Valdinoci [46]. By the Lax-Milgram theorem, we know that for each u ∈ Ds,2(R3),
there exists a unique solution ϕ = ϕu ∈ Ds,2(R3) such that (−∆)sϕu = |u|2∗s−1 in a weak sense.
The function ϕu can been expressed explicitly as

ϕu(x) = Ks

∫
R3

|u(y)|2∗s−1

|x− y|3−2s
dy, ∀ x ∈ R3, (2.1)

where Ks = π− 3
2 2−2sΓ(3 − 2s)(Γ(s))−1, see He [25] for example. The function ϕu has the

following characteristics, see Qu-He [43] for the proof.

Lemma 2.1. Let u ∈ Ds,2(R3), then the following hold:

(i) ϕtu = t2
∗
s−1ϕu for all t ≥ 0.

(ii) For any u ∈ Ds,2(R3), we have ∥ϕu∥ ≤ S− 1
2 ∥u∥2

∗
s−1

2∗s
and∫

R3

ϕu|u|2
∗
s−1 dx ≤ S− 1

2

(∫
R3

|u|2
∗
s dx

) 2∗s−1

2∗s
∥ϕu∥ ≤ S−1∥u∥2(2

∗
s−1)

2∗s
.

(iii) If un ⇀ u in Ds,2(R3) and un → u a.e. in R3, then ϕun
⇀ ϕu in Ds,2(R3) and ϕun

−
ϕun−u − ϕu → 0 in Ds,2(R3).

(iv) If un ⇀ u in Ds,2(R3) and un → u a.e. in R3, then∫
R3

ϕun
|un|2

∗
s−1 dx−

∫
R3

ϕun−u|un − u|2
∗
s−1 dx−

∫
R3

ϕu|u|2
∗
s−1 dx→ 0,

and

ϕun |un|2
∗
s−3un − ϕun−u|un − u|2

∗
s−3(un − u)− ϕu|u|2

∗
s−3u ⇀ 0

in (Ds,2(R3))∗, where (Ds,2(R3))∗ denotes the dual space of Ds,2(R3).
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Lemma 2.2. If V ∈ L
3
2s (R3), then the functional

G(u) =

∫
R3

V (x)u2 dx

is weakly continuous in Ds,2(R3).

Proof. The proof is analogous to that of Lemma 2.13 in Willem [51], we sketch it here for
convenience. First, the functional G is well defined by Hölder’s inequality. Let un ⇀ u be
weakly in Ds,2(R3). By virtue of the continuity of the Sobolev embedding Ds,2(R3) ↪→ L2∗s (R3),

we see that un ⇀ u weakly in L2∗s (R3). Thus, u2n ⇀ u2 weakly in L
3

3−2s (R3). Notice that

V ∈ L
3
2s (R3) = (L

3
3−2s (R3))∗. Consequently,∫

R3

V (x)u2 dx→
∫
R3

V (x)u2 dx as n→ ∞,

which completes the proof. □

At the end of this paragraph, we introduce the following version of the Hardy-Littlewood-
Sobolev inequality, see Lieb-Loss [33].

Proposition 2.3. Assume that t, r > 1 and 0 < α < N with 1/t+α/N +1/r = 2, f ∈ Lt(RN )
and h ∈ Lr(RN ), then there exists a sharp constant C(t,N, α, r) independent of f, h satisfying∫∫

R2N

f(x)h(y)

|x− y|α
dx dy ≤ C(t,N, α, r)∥f∥t∥h∥r. (2.2)

If t = r = 2N
2N−α , then

C(t,N, α, r) = C(N,α) = π
α
2
Γ(π2 − α

2 )

Γ(N − α
2 )

{
Γ(π2 )

Γ(N)

}−1+ α
N

.

In this case there is equality in (2.2) if and only if f ≡ Ch and

h(x) = A(δ2 + |x− x0|2)−
2N−α

2

for some A ∈ C, δ ∈ R \ {0} and x0 ∈ RN .

3. Limit problem

From the assumptions (V1) and (V2), the limit equation of (1.1) takes the form as{
ε2s(−∆)su− ϕ|u|2∗s−3u = |u|2∗s−2u, x ∈ R3,

ε2s(−∆)sϕ = |u|2∗s−1, x ∈ R3.
(3.1)

Recall that for each ε > 0, we have the Nehari manifolds

Nε =
{
u ∈ Ds,2(R3) \ {0} : J ′

ε(u)u = 0
}
, N∞

ε =
{
u ∈ Ds,2(R3) \ {0} : J ′

ε,∞(u)u = 0
}
,

and for each ε > 0, we define the infimums

mε := inf
u∈Nε

Jε(u) and m∞
ε := inf

u∈Nε,∞
Jε,∞(u).

Now, we study the correspondence between the ground state solutions of (3.1) with ε = 1,
i.e., {

(−∆)su− ϕ|u|2∗s−3u = |u|2∗s−2u, x ∈ R3,

(−∆)sϕ = |u|2∗s−1, x ∈ R3,
(3.2)

and the ground state solutions to the following equation

(−∆)su = |u|2
∗
s−2u, x ∈ R3. (3.3)

The following observation is useful in the energy estimation of the corresponding functionals.
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Lemma 3.1.

(i) The ground state solutions of problem (3.2) and problem (3.3) are one-to-one correspon-
dences.

(ii) Assume that u, ϕ are positive solutions of (3.2), then we have

u(x) = ϕ(x) = Ũδ,x0
(x) := κUδ,x0

(x) for some x0 ∈ R3 and δ > 0,

where the function

Uδ,x0(x) :=
dsδ

3−2s
2

(δ2 + |x− x0|2)
3−2s

2

solves (3.3) with the numbers

ds =

(
S3/(2s)Γ(3)

π3/2Γ(3/2)

) 3−2s
6

, κ =

(√
5− 1

2

) 3−2s
4s

.

Moreover, Uδ,x0 satisfies

∥Uδ,x0
∥2Ds,2 = ∥Uδ,x0

∥2
∗
s

2∗s
= S

3
2s .

Proof. (i) Assume that w1(x) is a solution of problem (3.3), then

w2(x) = Dw1
w1(x),

where Dw1
is given by

D
2−2∗s
w1 =

1

2

(
1 +

√
1 + 4

∫
R3 ϕw1 |w1|2∗s−1 dx∫

R3 |w1|2∗s dx

)
(3.4)

solving problem (3.2). For any solutions w11(x) and w12(x) of problem (3.3), if Dw11
w11(x) =

Dw12
w12(x) holds, then we infer to

w11(x) =
Dw12

Dw11

w12(x).

Since both w11(x) and w12(x) are solutions of problem (3.3), we have Dw12
/Dw11

= 1 and hence
w11(x) = w12(x). On the other hand, assume that w2(x) is a solution of problem (3.2), then

w1(x) = Tw2
w2(x)

solves problem (3.3), where Tw2
> 0 fulfills

T
2∗s−2
w2 =

∫
R3 ϕw2

|w2|2
∗
s−1 dx+

∫
R3 |w2|2

∗
s dx∫

R3 |w2|2∗s dx
.

From the observations above, we infer that w1(x)
Dw1−→ w2(x)

Tw2−→ w1(x).
(ii) Now, we introduce the following equation{

(−∆)
s
u = ϕ|u|2∗s−3u, x ∈ R3,

(−∆)
s
ϕ = |u|2∗s−1, x ∈ R3.

(3.5)

Assume that u, ϕ are positive solutions for (3.5), then

(−∆)
s
(u− ϕ) = (ϕ− u) |u|2

∗
s−2, x ∈ R3.

Multiplying both sides of this equation by (u− ϕ) and integrating by part gives∫
R3

| (−∆)
s
2 (u− ϕ) |2 dx+

∫
R3

(u− ϕ)
2 |u|2

∗
s−2 dx = 0.
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Hence we can conclude that u = ϕ = Uδ,x0
and so, (3.3) is equivalent to (3.5). Thus, the function

Uδ,x0
satisfies∫

R3

|(−∆)
s
2Uδ,x0

|2 dx =

∫
R3

ϕUδ,x0
|Uδ,x0

|2
∗
s−1 dx =

∫
R3

|Uδ,x0
|2

∗
s dx = S

3
2s , (3.6)

taking the form

Uδ,x0
(x) :=

dsδ
3−2s

2

(δ2 + |x− x0|2)
3−2s

2

.

Now, testing (3.4) by w1(x) = Uδ,x0
(x), by a direct calculation, we obtain

Dw1 =

(√
5− 1

2

) 3−2s
4s

:= κ. (3.7)

Therefore, the ground state solution of (3.2) has the form

w2(x) := Ũδ,x0
(x) := κUδ,x0

(x) for some x0 ∈ R3 and δ > 0.

The assertions follows. □

Remark 3.2. From (3.6) and (3.7), by a simple computation, we have that

∥Ũδ,x0∥2 =

(√
5− 1

2

) 3−2s
2s

S
3
2s

and U∗
δ,x0

(x) := ε
3−2s

2 Ũδ,x0(x) is the unique ground state solution of equation (3.1).

Lemma 3.3. The infimum m∞
ε is achieved by U∗

δ,x0
(x) = ε

3−2s
2 Ũδ,x0

(x) with

m∞
ε = Jε,∞(U∗

δ,x0
) = ε3

(√
5− 1

2

) 3−2s
2s

s
[
12 + (1−

√
5)(3− 2s)

]
6(3 + 2s)

S
3
2s .

Proof. By Lemma 3.1 and Remark 3.2, we see that

U∗
δ,x0

(x) = ε
3−2s

2 Ũδ,x0
(x) (3.8)

is the positive ground solution of equation (3.1). Moreover, by (3.6), (3.7) and (3.8), a direct
computation shows that

Jε,∞(U∗
δ,x0

)

=
ε3

2

∫
R3

|(−∆)
s
2 Ũδ,x0 |2 dx− ε3

2(2∗s − 1)

∫
R3

ϕŨε,x0
|Ũε,x0 |2

∗
s−1 dx− ε3

2∗s

∫
R3

|Ũε,x0 |2
∗
s dx

= ε3
(
κ2

2

∫
R3

|(−∆)
s
2Uδ,x0 |2 dx− κ2(2

∗
s−1)

2(2∗s − 1)

∫
R3

ϕUε,x0
|Uε,x0 |2

∗
s−1 dx− κ2

∗
s

2∗s

∫
R3

|Uε,x0 |2
∗
s dx

)
= ε3

(
κ2

2
S

3
2s − κ2(2

∗
s−1)

2(2∗s − 1)
S

3
2s − κ2

∗
s

2∗s
S

3
2s

)
= ε3

(
κ2

2
− κ2(2

∗
s−1)

2(2∗s − 1)
− κ2

∗
s

2∗s

)
S

3
2s

= ε3

(√
5− 1

2

) 3−2s
2s

s
[
12 + (1−

√
5)(3− 2s)

]
6(3 + 2s)

S
3
2s .

□

Lemma 3.4. Suppose that the conditions (V1) and (V2) are satisfied. Then mε = m∞
ε and mε

is not attained.
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Proof. Let u ∈ Ds,2(R3), we define the function

Ψ(t) := ⟨J ′
ε(tu), tu⟩

= t2ε2s
∫
R3

|(−∆)
s
2u|2 dx+ t2

∫
R3

V (x)u2 dx− ε−2st2(2
∗
s−1)

∫
R3

ϕu|u|2
∗
s−1 dx

− t2
∗
s

∫
R3

|u|2
∗
s dx

= at2 − bt22
∗
α,s − ct2

∗
s ,

where

a =

∫
R3

(ε2s|(−∆)
s
2u|2 + V (x)u2) dx, b = ε−2s

∫
R3

ϕu|u|2
∗
s−1 dx and c =

∫
R3

|u|2
∗
s dx.

It is easy to check that there exist unique t(u) > 0, s(u) > 0 such that t(u)u ∈ Nε, s(u)u ∈ N∞
ε

and

Jε(t(u)u) = max
t>0

Jε(tu), Jε,∞(s(u)u) = max
t>0

Jε,∞(tu).

Moreover, for each u ∈ Nε, we derive that

m∞
ε ≤ Jε,∞(s(u)u)

≤ ε2s

2
∥s(u)u∥2 + 1

2

∫
R3

V (x)|s(u)u|2 dx

− ε−2s |s(u)|2(2
∗
s−1)

2(2∗s − 1)

∫
R3

ϕu|u|2
∗
s−1 dx− |s(u)|2∗s

2∗s

∫
R3

|u|2
∗
s dx

= Jε(s(u)u)

≤ Jε(u),

consequently, one has

m∞
ε ≤ mε. (3.9)

Let w be a positive solution of (1.10) centered at the origin and take a sequence {xn}n∈N ⊂ R3

such that |xn| → ∞ as n → ∞. Set wn(x) = ε
3−2s

2 w(x − xn) and tn = t(wn). Clearly, wn ⇀ 0
in Ds,2(R3) and by Lemma 2.2, we have∫

R3

V (x)w2
n dx→ 0.

At this point, we have

Jε(tnwn) =
t2nε

2s

2
∥wn∥2 +

t2n
2
on(1)−

ε−2s|tn|2(2
∗
s−1)

2(2∗s − 1)

∫
R3

ϕwn |wn|2
∗
s−1 dx

− |tn|2
∗
s

2∗s

∫
R3

|wn|2
∗
s dx.

(3.10)

Since wn ∈ N∞
ε and tnwn ∈ Nε, we have

ε2s∥wn∥2 = ε−2s

∫
R3

ϕwn
|wn|2

∗
s−1 dx+

∫
R3

|wn|2
∗
s dx, (3.11)

and

ε2st2n∥wn∥2 + t2n

∫
R3

V (x)w2
n dx = ε−2st2(2

∗
s−1)

∫
R3

ϕwn |wn|2
∗
s−1 dx+ t2

∗
s

∫
R3

|wn|2
∗
s dx. (3.12)

From (3.11) and (3.12) it follows

ε2s
[
t
2(2∗s−2)
n − 1

]
∥wn∥2 +

[
t
2∗s−2
n − t

2(2∗s−2)
n

] ∫
R3

|wn|2
∗
s dx =

∫
R3

V (x)w2
n dx = on(1),
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which implies that tn → 1 as n→ ∞. By (3.10), we arrive that limn→∞ Jε(wn) = m∞
ε . Hence,

we deduce to mε ≤ m∞
ε , and then mε = m∞

ε by (3.9).
Next, we show that mε cannot be achieved. Assuming the conclusion is not true, then there

exists u0 ∈ Nε such that Jε(u0) = mε = m∞
ε . Therefore, by s(u0)u0 ∈ N∞

ε , we infer to

m∞
ε ≤ Jε,∞(s(u0)u0)

≤ ε2s

2
∥s(u0)u0∥2 +

1

2

∫
R3

V (x)|s(u0)u0|2 dx

− 1

2(2∗s − 1)

∫
R3

ϕs(u0)u0
|s(u0)u0|2

∗
s−1 dx− 1

2∗s

∫
R3

|s(u0)u0|2
∗
s dx

= Jε(s(u0)u0) ≤ Jε(u0) = m∞
ε .

Inevitably, we conclude that∫
R3

V (x)|s(u0)u0|2 dx = 0, s(u0) = 1 imply u0 ≡ 0 on R3 \M.

Therefore, u0 ∈ N∞
ε with Jε(u0) = m∞

ε . Then, by Lemma 3.3, u0(x) = ε
3−2s

2 Ũδ,x0
(x) > 0 for

all x ∈ R3 and for some δ > 0, x0 ∈ R3, which contradicts u0 ≡ 0 on R3 \M . □

Corollary 3.5. Let c > 0 and {un}n∈N be a (PS)c-sequence of Jε restricted on Nε. Then
{un}n∈N is a (PS)c-sequence of Jε in Ds,2(R3). If u is a critical point of Jε restricted on Nε,
then u must be a critical point of Jε in Ds,2(R3).

Proof. If {un}n∈N is a (PS)-sequence of Jε restricted on Nε, then we have

c+ on(1) =
1

2

∫
R3

(
ε2s|(−∆)

s
2un|2 + V (x)|un|2

)
dx− ε−2s

2(2∗s − 1)

∫
R3

ϕun |un|2
∗
s−1 dx

− 1

2∗s

∫
R3

|un|2
∗
s dx,

and

0 =

∫
R3

(
ε2s|(−∆)

s
2un|2 + V (x)|un|2

)
dx− ε−2s

∫
R3

ϕun |un|2
∗
s−1 dx−

∫
R3

|un|2
∗
s dx.

Consequently, we obtain

c+ on(1) =

(
1

2
− 1

2∗s

)∫
R3

[
ε2s|(−∆)

s
2un|2 + V (x)|un|2

]
dx

+

(
1

2∗s
− 1

2(2∗s − 1)

)∫
R3

ϕun
|un|2

∗
s−1 dx.

Thus, {un}n∈N is bounded in Ds,2(R3). By virtue of un ∈ Nε and by Lemma 2.1, we derive
that

ε2s
∫
R3

|(−∆)
s
2un|2 dx

≤ ε2s
∫
R3

|(−∆)
s
2un|2 dx+

∫
R3

V (x)|un|2 dx

= ε−2s

∫
R3

ϕun
|un|2

∗
s−1 dx+

∫
R3

|un|2
∗
s dx ≤ ε−2sS−1|un|

2(2∗s−1)
2∗s

+ |un|
2∗s
2∗s

≤ ε−2sS−2∗s

(∫
R3

|(−∆)
s
2un|2 dx

)2∗s−1

+ S− 2∗s
2

(∫
R3

|(−∆)
s
2un|2 dx

) 2∗s
2

,

which implies that

ε−2sS−2∗s

(∫
R3

|(−∆)
s
2un|2 dx

)2∗s−2

+ S− 2∗s
2

(∫
R3

|(−∆)
s
2un|2 dx

) 2∗s−2

2

≥ ε2s.
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Hence ∫
R3

|(−∆)
s
2un|2 dx ≥

(√
5− 1

2

) 3−2s
2s

S
3
2s ε3−2s. (3.13)

On the other hand, by the Lagrangian multiplier rule, we have for λn ∈ R such that

on(1) = J ′
ε(un)− λnF

′
ε(un),

with Fε(u) = J ′
ε(u)u. Since {un}n∈N is bounded in Ds,2(R3), we get

on(1) = J ′
ε(un)un − λnF

′
ε(un)un = −λnF ′

ε(un)un.

In view of 2∗s > 2, and by (3.13), we infer that

F ′
ε(un)un = 2ε2s

∫
R3

|(−∆)
s
2un|2 dx+ 2

∫
R3

V (x)u2n dx

− 2(2∗s − 1)ε−2s

∫
R3

ϕun |un|2
∗
s−1 dx− 2∗s

∫
R3

|un|2
∗
s dx

= (2− 2∗s)ε
2s

∫
R3

|(−∆)
s
2un|2 dx+ (2− 2∗s)

∫
R3

V (x)|un|2 dx

+ (2− 2∗s)ε
−2s

∫
R3

ϕun
|un|2

∗
s−1 dx

≤ (2− 2∗s)ε
2s

∫
R3

|(−∆)
s
2un|2 dx

≤ [2− 2∗s]

(√
5− 1

2

) 3−2s
2s

S
3
2s ε3−2s < 0.

(3.14)

As a result, λn → 0 as n → ∞. Moreover, using the boundedness of {un}n∈N, we deduce that
{F ′

ε(un)}n∈N is bounded. So, J ′
ε(un) → 0 as n → ∞ and then {un}n∈N is a (PS)c-sequence of

Jε in Ds,2(R3).
Now, if u is a critical point of Jε restricted on Nε, then there exists λ ∈ R so as to J ′

ε(u) =
λF ′

ε(u), and

0 = Fε(u) = J ′
ε(u)u = λF ′

ε(u)u.

By the same calculation as in (3.14), we can obtain that

F ′
ε(u)u ≤ [2− 2∗s]

(√
5− 1

2

) 3−2s
2s

S
3
2s ε3−2s < 0.

Hence, λ = 0 and so, J ′
ε(u) = 0. □

4. A global compactness lemma

In this section, we intend to establish a global compactness lemma, which is useful in the
analyzing the decomposition of the (PS)-sequences, and proving its compactness.

Lemma 4.1. Let the conditions (V1), (V2) be satisfied and let, for each ε > 0, {un}n∈N ⊂
Ds,2(R3) be a (PS)-sequence of Jε at the level c > 0. Then, replacing un with a subsequence if
necessary, there exist a number k ∈ N, sequences of points x1n, · · · , xkn ∈ R3 and radii r1n, · · · , rkn
such that the following hold:

(i) u0n ≡ un ⇀ u0 in Ds,2(R3);
(ii) ujn ≡ (uj−1

n − uj−1)rjn,xj
n
⇀ uj in Ds,2(R3), j = 1, 2, · · · , k;

(iii) ∥un∥2 →
∑k

j=0 ∥uj∥2;
(iv) Jε(un) → Jε(u

0) +
∑k

j=1 Jε,∞(uj),
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as n→ ∞, where u0 is a solution of equation (1.1) and uj , 1 ≤ j ≤ k, are the nontrivial solutions
of equation (1.10). Moreover, in case k = 0 the above holds without uj.

Proof. Let {un}n∈N be a (PS)c-sequence for Jε. Then, {un}n∈N is bounded in Ds,2(R3). Thus,
we may extract a subsequence of {un}n∈N, still denote by itself, such that un ⇀ u0 in Ds,2(R3)
as n → ∞ and un → u0 a.e. in R3. Moreover, J ′

ε(u
0) = 0. Indeed, for each φ ∈ C∞

0 (R3), we
have

J ′
ε(un)φ = ε2s

∫
R3

(−∆)
s
2un(−∆)

s
2φdx+

∫
R3

V (x)unφdx

− ε−2s

∫
R3

ϕun
|un|2

∗
s−3unφdx−

∫
R3

|un|2
∗
s−2unφdx.

By Lemma 2.1, it follows that ϕun
⇀ ϕu0 in Ds,2(R3) and then ϕun

⇀ ϕu0 in L2∗s (R3). Thus,∫
R3

(ϕun
− ϕu0)|u0|2

∗
s−3u0φ→ 0 as n→ ∞. (4.1)

In view of un → u a.e. in R3 and using Hölder’s inequality, we infer to∫
R3

∣∣∣ϕun
(|un|2

∗
s−3un − |u0|2

∗
s−3u0)

∣∣∣ 2∗s
2∗s−1

dx

≤ C

(
|ϕun

|
2∗s

2∗s−1

2∗s
|un|

2∗s (2∗s−2)

2∗s−1

2∗s
+ |ϕun

|
2∗s

2∗s−1

2∗s
|u0|

2∗s (2∗s−2)

2∗s−1

2∗s

)
≤ C.

By Proposition 5.4.7 in Willem [50], one has ϕun
(|un|2

∗
s−3un−|u0|2∗s−3u)⇀ 0 in L

2∗s
2∗s−1 (R3) and

then ∫
R3

ϕun
(|un|2

∗
s−3un − |u0|2

∗
s−3u0)φdx→ 0 as n→ ∞.

This together with (4.1) implies∫
R3

ϕun
|un|2

∗
s−3unφdx→

∫
R3

ϕu0 |u0|2
∗
s−3uφdx as n→ ∞. (4.2)

Since |un|2
∗
s−2un ⇀ |u0|2∗s−2u0 in L

2∗s
2∗s−1 (R3), we have∫

R3

|un|2
∗
s−2unφdx→

∫
R3

|u0|2
∗
s−2u0φdx.

Therefore, combining (4.2) with the weak convergence of un ⇀ u0 in Ds,2(R3), we derive to

J ′
ε(u

0)φ = lim
n→∞

J ′
ε(un)φ = 0 for all φ ∈ C∞

0 (R3).

This implies that J ′
ε(u

0) = 0 and u is a critical point of Jε by the density of C∞
0 (R3) in Ds,2(R3).

Set

v1n(x) := un(x)− u0(x).

Applying the Brezis-Lieb Lemma [9] and Lemma 2.1 (iv), we can easily deduce that

∥v1n∥2 = ∥un∥2 − ∥u0∥2 + on(1), ∥v1n∥
2∗s
2∗s

= ∥un∥
2∗s
2∗s

− ∥u∥2
∗
s

2∗s
+ on(1), (4.3)

Jε(v
1
n) = Jε(un)− Jε(u

0) + on(1),

and

J ′
ε(v

1
n) = J ′

ε(un)− J ′
ε(u

0) + on(1).

By v1n ⇀ 0 in Ds,2(R3) and Lemma 2.2, one has∫
R3

V (x)|v1n|2 dx = on(1) and

∫
R3

V (x)v1nφdx = on(1)∥φ∥
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for each φ ∈ Ds,2(R3). Consequently, we arrive that

Jε,∞(v1n) = Jε(v
1
n) + on(1) = Jε(un)− Jε(u) + on(1)

J ′
ε,∞(v1n) = J ′

ε(v
1
n) + on(1) = on(1).

(4.4)

If v1n → 0 in Ds,2(R3), then we are done. If v1n ↛ 0 in Ds,2(R3), then there exists η > 0
satisfying

Jε(v
1
n) > η > 0. (4.5)

We claim that there exist two sequences {rn}n∈N ⊂ R+ and {yn}n∈N ⊂ R3 verifying

hn := (v1n)rn,yn
⇀ ω ̸= 0 in Ds,2(R3),

where (v1n)rn,yn
= r

3−2s
2

n v1n(rnx+ yn). Indeed, by (4.4) we get

ε2s∥v1n∥2 = ε−2s

∫
R3

ϕv1
n
|v1n|2

∗
s−1 dx+

∫
R3

|v1n|2
∗
s dx+ on(1)

and

Jε,∞(v1n) = ε−2s

(
1

2
− 1

2(2∗s − 1)

)∫
R3

ϕv1
n
|v1n|2

∗
s−1 dx+

(
1

2
− 1

2∗s

)∫
R3

|v1n|2
∗
s dx+ on(1).

Combining (4.5), Lemma 2.1(ii) and the boundedness of {un}n∈N, we obtain that

0 < d1 < |v1n|
2∗s−1
2∗s

< D1,

for some d1, D1 > 0. Now, we introduce the Lévy concentration function

Qn(r) := sup
x∈R3

∫
Br(z)

|v1n|2
∗
s dx.

In view of Qn(0) = 0 and Qn(∞) > d
6

3+2s

1 , then there exist sequences {rn}n∈N ⊂ R+ and
{yn}n∈N ⊂ R3 so as to

sup
z∈R3

∫
Br(z)

|v1n|2
∗
s dx =

∫
Brn (yn)

|v1n|2
∗
s dx = b,

where

0 < b < min

{
d

6
3+2s

1 ,

(
S

2C3,sD1

) 6
6s−3

}
.

Recalling that hn = (v1n)rn,yn
, without any loss of generality, we may assume that hn ⇀ h in

Ds,2(R3) and hn → h a.e. in R3. A simple calculation yields

sup
z∈R3

∫
B1(z)

|hn(x)|2
∗
s dx =

∫
B1(0)

|hn(x)|2
∗
s dx =

∫
Brn (yn)

|v1n|2
∗
s dx = b. (4.6)

By virtue of the invariance of the Ds,2(R3)-norms under translation and dilation, we have

∥v1n∥2 = ∥hn∥2, ∥v1n∥
2∗s
2∗s

= ∥hn∥
2∗s
2∗s
,

∫
R3

ϕhn
|hn|2

∗
s−1 dx =

∫
R3

ϕv1
n
|v1n|2

∗
s−1 dx,

which lead to

Jε,∞(hn) = Jε,∞(v1n) = Jε,∞(un)− Jε,∞(u0) + on(1), (4.7)

and by (4.4), we get

J ′
ε,∞(hn) = J ′

ε,∞(v1n) = on(1).
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If h = 0, then hn → 0 in L2
loc(R3). Suppose that ψ ∈ C∞

0 (R3) such that suppψ ⊂ B1(y
0) for

some y0 ∈ R3 and |∇ψ(x)| ≤ C for all x ∈ R3, and we obtain

∥ψhn∥2 =

∫∫
R6

|ψ(x)hn(x)− ψ(y)hn(y)|2

|x− y|3+2s
dxdy

=

∫∫
R6

(hn(x)− hn(y))(ψ
2(x)hn(x)− ψ2(y)hn(y))

|x− y|3+2s
dxdy

+

∫∫
R6

|ψ(x)− ψ(y)|2hn(x)hn(y)
|x− y|3+2s

dxdy.

(4.8)

By Hölder’s inequality, we have∫∫
R6

|ψ(x)− ψ(y)|2hn(x)hn(y)
|x− y|3+2s

dx dy

≤
(∫∫

R6

|ψ(x)− ψ(y)|2h2n(x)
|x− y|3+2s

dxdy

) 1
2

×
(∫∫

R6

|ψ(x)− ψ(y)|2h2n(x)
|x− y|3+2s

dx dy

) 1
2

.

(4.9)

We claim that∫∫
R6

|ψ(x)− ψ(y)|2h2n(x)
|x− y|3+2s

dxdy =

∫∫
R6

|ψ(x)− ψ(y)|2h2n(y)
|x− y|3+2s

dxdy = on(1). (4.10)

To this aim, we derive out∫∫
R6

|ψ(x)− ψ(y)|2h2n(x)
|x− y|3+2s

dxdy

=

∫
B1(y0)

∫
B1(y0)

|ψ(x)− ψ(y)|2h2n(x)
|x− y|3+2s

dxdy

+ 2

∫
B1(y0)

∫
Bc

1(y
0)

|ψ(x)− ψ(y)|2h2n(x)
|x− y|3+2s

dx dy

≤
∫
B1(y0)

h2n(x) dx

∫
B1(y0)

|∇ψ(y + τ(x− y))|2|x− y|2

|x− y|3+2s
dy

+ C

∫
B1(y0)

h2n(x) dx

∫
Bc

1(y
0)

1

|x− y|3+2s
dy

≤ C1

∫
B1(y0)

h2n(x) dx

∫ 2

0

r2

r1+2s
dr + C

∫
B1(y0)

h2n(x) dx

∫ ∞

1

r2

r3+2s
dr

≤ C2

∫
B1(y0)

h2n(x) dx→ 0

(4.11)

as n→ ∞, by virtue of hn → 0 in L2
loc(R3), where τ = τ(y) ∈ (0, 1). By a similar argument, we

can prove ∫∫
R6

|ψ(x)− ψ(y)|2h2n(y)
|x− y|3+2s

dx dy → 0 as n→ ∞. (4.12)

By (4.8)–(4.12), we have

∥ψhn∥2 =

∫∫
R6

(hn(x)− hn(y))(ψ
2(x)hn(x)− ψ2(y)hn(y))

|x− y|3+2s
dxdy + on(1).



BOUND STATES FOR A CLASS OF FRACTIONAL CRITICAL SCHRÖDINGER-POISSON SYSTEMS 15

Therefore, combining the results above and Proposition 2.3, we have

ε2sS∥ψhn∥22∗s ≤ ε2s∥ψhn∥2

= ε2s
∫∫

R6

(hn(x)− hn(y))(ψ
2(x)hn(x)− ψ2(y)hn(y))

|x− y|3+2s
dx dy + on(1)

= ε2s
∫
R3

ϕhn
|hn|2

∗
s−1ψ2 dx+ on(1)

≤ ε2sC3,s∥hn∥
2∗s−1
2∗s

(∫
R3

(|hn|2
∗
s−1ψ2)

6
3+2s dx

) 3+2s
6

+ on(1)

= ε2sC3,s∥hn∥
2∗s−1
2∗s

(∫
R3

|hn|
6s−3
3−2s

6
3+2s |hnψ|

12
3+2s dx

) 3+2s
6

+ on(1)

≤ ε2sC3,s|hn|
2∗s−1
2∗s

(∫
R3

|ψhn|2
∗
s dx

) 3−2s
3

(∫
B1(y0)

|hn|2
∗
s dx

) 6s−3
6

+ on(1)

≤ ε2sC3,sD1b
6s−3

6

(∫
R3

|ψhn|2
∗
s dx

) 3−2s
3

+ on(1) <
1

2
ε2sS∥ψhn∥22∗s + on(1),

which shows that hn → 0 in L
2∗s
loc(R3), a contradiction to (4.6). Thus, h ̸= 0. By (4.4) and the

weakly sequentially continuity of J ′
ε,∞, we deduce J ′

ε,∞(h) = 0 and so {hn}n∈N, {r1n}n∈N and

{y1n}n∈N are the required sequences.
By iterating this procedure, we have the sequences vjn = uj−1

n − uj−1, j ≥ 2, and the re-
scaled functions ujn = (vjn)rjn,yj

n
⇀ uj in Ds,2(R3), where uj is a nontrivial solution to (1.10).

Furthermore, by (4.3), (4.4) and (4.7), we arrive at

∥ujn∥2 = ∥vjn∥2 = ∥uj−1
n ∥2 − ∥uj−1∥2 + on(1) = · · · = ∥un∥2 −

j−1∑
i=0

∥ui∥2 + on(1),

and

Jε,∞(ujn) = Jε,∞(vjn) = Jε,∞(uj−1
n )− Jε,∞(uj−1) + on(1)

= · · · = Jε(un)− Jε(u
0)−

j−1∑
i=1

Jε,∞(ui).

Since

0 = J ′
ε,∞(uj)uj = ε2s∥uj∥2 − ε−2s

∫
R3

ϕuj |uj |2
∗
s−1 dx−

∫
R3

|uj |2
∗
s dx

≥ ε2s∥uj∥2 − ε−2sS−2∗s∥uj∥2(2
∗
s−1) − S− 2∗s

2 ∥uj∥2
∗
s ,

we conclude

∥uj∥2 ≥

(√
5− 1

2

) 3−2s
2s

S
3
2s ε3−2s,

and the iteration must stop at some index k ≥ 0. □

Corollary 4.2. If {un}n∈N is a nonnegative (PS)c-sequence for Jε with c ∈ (mε, 2mε), then,
for each ε > 0, {un}n∈N is relatively compact in Ds,2(R3).
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Proof. It follows by Lemma 4.1, that there exist a number k ∈ N, a solution u0 of (1.1) and
solutions u1, · · · , uk of (1.10), fulfilling

∥un∥2 →
k∑

j=0

∥uj∥2 and Jε(un) → Jε(u
0) +

k∑
j=1

Jε,∞(uj) = c+ on(1),

as n → ∞. By Lemma 3.4, if u0 is a nontrivial solution of (1.1), then Jε(u
0) > mε. Noticing

that, for each nontrivial solution uj of (1.10), whether uj is positive or negative, then we have

Jε,∞(uj) = ε3

(√
5− 1

2

) 3−2s
2s

s
[
12 + (1−

√
5)(3− 2s)

]
6(3 + 2s)

S
3
2s = mε.

If uj is a sign-changing solution of (1.10), we can easily deduce that

Jε,∞(uj) ≥ 2mε,

see Zhang-Zhang [55]. Since

mε < c < 2mε,

we must have k = 0, which implies that un → u0 in Ds,2(R3). □

5. Proof of Theorem 1.1

In this section, we focus our attention in showing the multiplicity of high energy semiclas-
sical states by means of the the Lusternik-Schnirelmann category theory. We begin with some
preparations. For small µ > 0, we may take ρ = ρ(µ) > 0 such that Mµ ⊂ Bρ(0). Set

χ(x) =

{
x if |x| < ρ,
ρx
|x| if |x| ≥ ρ.

We define β : Nε → R3 and γ : Nε → R+ by

β(u) =
1

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

χ(x)|(−∆)
s
2u|2 dx,

and

γ(u) =
1

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

|χ(x)− β(u)||(−∆)
s
2u|2 dx.

It is not difficulty to see that, for any fixed Ũδ,z ∈ Ds,2(R3), there exists a unique tδ,z in (0,+∞)
such that

Φδ,z(x) := tδ,zε
3−2s

2 Ũδ,z(x) ∈ Nε.

We define the set

Γ = Γ(ρ, δ1, δ1) := {(x, δ) ∈ R3 × R : |x| < ρ/2, δ1 < δ < δ2}. (5.1)

A direct calculation shows that, for any fixed z ∈ R3, we have∫
R3

V (x)Ũ2
δ,z(x) dx→ 0 as δ → 0.

Thus, for each ε > 0 and any fixed z ∈ R3, we derive that limδ→0 tδ,z = 1. So, for each ε > 0,
there exist δ1 = δ1(ε) and δ2 = δ2(ε) with δ1 < δ2 and δ1, δ2 → 0 as ε → 0, satisfying the
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inequality

sup {Jε(Φδ,z) : (z, δ) ∈ Λ}

< ε3

(√
5− 1

2

) 3−2s
2s

s
[
12 + (1−

√
5)(3− 2s)

]
6(3 + 2s)

S
3
2s + h(ε)

 ,
(5.2)

where h(ε) → 0 as ε→ 0.

Lemma 5.1. There holds limδ→0 γ(Φδ,z) = 0 uniformly for |z| ≤ ρ
2 .

Proof. Let ξ > 0 be such that 0 < 2ξ < ρ. By tδ,z = 1 + oδ(1), we have

γ(Φδ,z) =
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

|χ(x)− β(Φδ,z)||(−∆)
s
2 Ũδ,z|2 dx+ oδ(1)

=
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3\Bξ(z)

|χ(x)− β(Φδ,z)||(−∆)
s
2 Ũδ,z|2 dx

+
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
Bξ(z)

|χ(x)− β(Φδ,z)||(−∆)
s
2 Ũδ,z|2 dx+ oδ(1)

:= I1 + I2 + oδ(1).

By Lemma 4.1 of He-Zhao-Zou [26], we derive

I1 =
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3\Bξ(0)

|χ(x+ z)− β(Φδ,0)||(−∆)
s
2 Ũδ,0|2 dx

≤ Cρ

∫
R3\Bξ(0)

|(−∆)
s
2 Ũδ,0|2 dx→ 0

as δ → 0.
For I2, by Remark 3.1 we infer to

β(Φδ,z) = β(ε
3−2s

2 Ũδ,z) + oδ(1)

=
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

χ(x)|(−∆)
s
2 Ũδ,z(x)|2 dx+ oδ(1)

= z +
δ3+2s(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

[χ(δx+ z)− z]|(−∆)
s
2 Ũ1,0|2 dx+ oδ(1) = z + oδ(1).

(5.3)
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As a result, we get(√
5− 1

2

) 3−2s
2s

S
3
2s I2

≤
∫
Bξ(z)

|χ(x)− χ(z)||(−∆)
s
2 Ũδ,z|2 dx+

∫
Bξ(z)

|χ(z)− β(Φδ,z)||(−∆)
s
2 Ũδ,z|2 dx

≤ 2

∫
Bξ(z)

|x− z||(−∆)
s
2 Ũδ,z|2 dx+ 2ξ

(√
5− 1

2

) 3−2s
2s

S
3
2s

+

∫
Bξ(z)

|χ(z)− z||(−∆)
s
2 Ũδ,z|2 dx+ oδ(1)

≤ 4ξ

(√
5− 1

2

) 3−2s
2s

S
3
2s + oδ(1),

where we have used Lemma 2 of Chabrowski-Yang [14], which states that

χ(x)− χ(z) ≤ 2|x− z|+ 2ξ, x ∈ Bξ(z).

As ξ > 0 can be arbitrarily small, we infer that limδ→0 γ(Φδ,z) = 0, uniformly for |z| ≤ ρ/2. □

Now, we define a set Ñε ⊂ Nε by

Ñε =
{
u ∈ Nε : ε3c∗ < Jε(u) < ε3(c∗ + h(ε)), (β(u), γ(u)) ∈ Γ

}
,

where Γ is given as (5.1) satisfying (5.2) and the number c∗ is defined as

c∗ :=

(√
5− 1

2

) 3−2s
2s

s
[
12 + (1−

√
5)(3− 2s)

]
6(3 + 2s)

S
3
2s .

According to Lemma 5.1, we can adjust δ1(ε) and δ2(ε) such that Ñε ̸= ∅ for ε > 0 small enough.

Lemma 5.2. There holds limε→0 supu∈Ñε
dist(β(u),Mµ) = 0 for any µ > 0.

Proof. Let un ∈ Ñεn be so as to

dist(β(un),Mµ) = sup
u∈Ñεn

dist(β(u),Mµ) + on(1),

and εn → 0 as n→ ∞. It is sufficient to obtain a sequence zn ∈Mµ such that

β(un) = zn + on(1). (5.4)

In view of un ∈ Nεn , we have∫
R3

(
ε2sn |(−∆)

s
2un|2 + V (x)|un|2

)
dx = ε−2s

n

∫
R3

ϕun |un|2
∗
s−1 dx+

∫
R3

|un|2
∗
s dx. (5.5)

For further discussion, we set

ℓn :=

∫
R3

(
ε2sn |(−∆)

s
2un|2 + V (x)|un|2

)
dx,

an := ε−2s
n

∫
R3

ϕun |un|2
∗
s−1 dx, bn :=

∫
R3

|un|2
∗
s dx.
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Multiplying both sides of the second equation of (1.1) (with ε replaced by εn) by |un| and
integrating by parts, using Young’s inequality, we infer, for εn > 0 small enough,∫

R3

|un|2
∗
s dx = ε2sn

∫
R3

(−∆)
s
2ϕun

(−∆)
s
2 |un|dx

≤ ε2sn τ
2

2

∫
R3

|(−∆)
s
2 |un||2 dx+

ε2sn
2τ2

∫
R3

|(−∆)
s
2ϕun

|2 dx

≤ τ2

2

∫
R3

ε2sn |(−∆)
s
2un|2 dx+

1

2τ2

∫
R3

ϕun |un|2
∗
s−1 dx

≤ τ2

2

∫
R3

(
ε2sn |(−∆)

s
2un|2 + V (x)|un|2

)
dx+

ε−2s
n

2τ2

∫
R3

ϕun
|un|2

∗
s−1 dx.

From the definition of ℓn, an and bn, it follows that

bn ≤ 1

2τ2
an +

τ2

2
ℓn. (5.6)

Choosing τ2 =
√
5−1
2 and using (5.5) as well as (5.6), we obtain that an ≥ 3−

√
5

2 ℓn. It follows
from (5.5) and (5.6) that

Jεn(un) = Jεn(un)−
1

2
J ′
εn(un)un

=
2s

3 + 2s
an +

s

3
bn

=
s(3− 2s)

3(3 + 2s)
an +

s

3
ℓn

≥ s(15− 2s−
√
5(3− 2s))

6(3 + 2s)
ℓn.

(5.7)

On the other hand, by the estimate (3.13), we have

ℓn =

∫
R3

(
ε2sn |(−∆)

s
2un|2 + V (x)|un|2

)
dx

> ε2sn

∫
R3

|(−∆)
s
2un|2 dx

≥ ε3n

(√
5− 1

2

) 3−2s
2s

S
3
2s .

(5.8)

Then from (5.7) and (5.8) we obtain

Jεn(un) ≥
s(15− 2s−

√
5(3− 2s))

6(3 + 2s)
ℓn

> ε3n

(√
5− 1

2

) 3−2s
2s

s(15− 2s−
√
5(3− 2s))

6(3 + 2s)
S

3
2s := ε3nc

∗.

Consequently, we have

ε3nc
∗ < Jεn(un)−

1

2
J ′
εn(un)un < ε3n(c

∗ + h(εn)). (5.9)

Letting wn := ε
2s−3

2
n un, we have from (5.7) and (5.9) that

ε3nc
∗ < Jεn(un)−

1

2
J ′
εn(un)un

=
s(3− 2s)

3(3 + 2s)
ε−2s
n

∫
R3

ϕun
|un|2

∗
s−1 dx+

s

3

∫
R3

(
ε2sn |(−∆)

s
2un|2 + V (x)|un|2

)
dx
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= ε3n

[
s(3− 2s)

3(3 + 2s)

∫
R3

ϕwn
|wn|2

∗
s−1 dx+

s

3

∫
R3

|(−∆)
s
2wn|2 dx+

s

3
ε−2s
n

∫
R3

V (x)|wn|2 dx
]

< ε3n(c
∗ + h(εn)),

from which we conclude that

ε−2s
n

∫
R3

V (x)w2
n dx→ 0 as n→ ∞.

Again by un ∈ Nεn , we obtain∫
R3

|(−∆)
s
2wn|2 dx+ ε−2s

n

∫
R3

V (x)w2
n dx =

∫
R3

ϕwn
|wn|2

∗
s−1 dx+

∫
R3

|wn|2
∗
s dx,

that is, {wn}n∈N is a (PS)-sequence for J1. It derives from Lemmas 3.4 and 4.1 with ε = 1 that
there exist a number k ∈ N, sequences of points x1n, · · · , xkn ∈ R3 and radii r1n, · · · , rkn such that:

(1) w0
n ≡ wn ⇀ w0 in Ds,2(R3);

(2) wj
n ≡ (wj−1

n − wj−1)rjn,xj
n
⇀ wj in Ds,2(R3), j = 1, 2, · · · , k;

(3) ∥wn∥2 →
∑k

j=0 ∥wj∥2;
(4) J1(wn) → J1(w

0) +
∑k

j=1 J1,∞(wj),

as n → ∞, where w0 is a solution of equation (1.1) with ε = 1 and uj , 1 ≤ j ≤ k, are the
nontrivial solutions of equation (3.2). Assume that w0 ̸= 0, then by Lemma 3.4, we have

J1(w
0) > c∗ :=

(√
5− 1

2

) 3−2s
2s

s(15− 2s−
√
5(3− 2s))

6(3 + 2s)
S

3
2s ,

which is a contradiction to conclusion (4) above, as J1,∞(wj) ≥ c∗ and J1(wn) → c∗. Con-
sequently, w0 = 0 and we must have k = 1 and w1 is a ground state solution of (3.2) with

J1,∞(w1) = c∗. Hence, there exist δ1 > 0 and z1 ∈ R3 such that w1 = Ũδ1,z1 and there exist
(r1n, x

1
n) ∈ R+×R3 such that

∥(wn)r1n,x1
n
− w1∥ → 0.

Thus, there exist a sequence of points {zn}n∈N ⊂ R3 and a sequence of {σn}n∈N ⊂ (0,+∞) such

that ∥qn∥ := ∥wn − Ũσn,zn∥ → 0 with zn = x1n + r1nz1 and σn = r1nδ1. We assert that

σn → 0 and {zn}n∈N is bounded. (5.10)
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In fact, setting Ψσn,zn = ε
3−2s

2
n Ũσn,zn , as qn → 0 in Ds,2(R3), we have∣∣∣∣ ∫

R3

χ(x)|(−∆)
s
2wn|2 dx−

∫
R3

χ(x)|(−∆)
s
2 Ũσn,zn |2 dx

∣∣∣∣
=

∣∣∣∣ ∫
R3

χ(x)
(
|(−∆)

s
2wn|2 − |(−∆)

s
2 Ũσn,zn |2

)
dx

∣∣∣∣
≤
∫
R3

|χ(x)| ×
∣∣∣|(−∆)

s
2wn|2 − |(−∆)

s
2 Ũσn,zn |2

∣∣∣ dx
≤ ρ

∫
R3

(
|(−∆)

s
2wn|+ |(−∆)

s
2 Ũσn,zn |

) ∣∣∣|(−∆)
s
2wn| − |(−∆)

s
2 Ũσn,zn |

∣∣∣ dx
≤ ρ

{∫
R3

(|(−∆)
s
2wn|+ |(−∆)

s
2 Ũσn,zn |)2 dx

} 1
2

×
{∫

R3

(|(−∆)
s
2wn| − |(−∆)

s
2 Ũσn,zn |)2 dx

} 1
2

≤
√
2ρ

√
∥wn∥2 + ∥Ũσn,zn∥2 ×

{∫
R3

|(−∆)
s
2wn − (−∆)

s
2 Ũσn,zn |2 dx

} 1
2

≤ C∥wn − Ũσn,zn∥ = C∥qn∥ → 0

(5.11)

as n→ ∞. Then, by (5.11), we have

β(un) =
1

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

χ(x)|(−∆)
s
2un|2 dx

=
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

χ(x)|(−∆)
s
2wn|2 dx

=
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

χ(x)|(−∆)
s
2 Ũσn,zn |2 dx+ on(1)

=
1

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

χ(x)|(−∆)
s
2Ψσn,zn |2 dx+ on(1)

= β(Ψσn,zn) + on(1).

(5.12)

By un ∈ Ñεn , it can be assumed that

β(Ψσn,zn) ⊂ Bρ/2(0). (5.13)

If σn → ∞, then for each R > 0, by Proposition 2.2 of Di Nezza-Palatucci-Valdinoci [18] and
Lemma 4.1 of He-Zhao-Zou [26], we obtain

lim
n→∞

1

ε3−2s
n

∫
BR(0)

|(−∆)
s
2Ψσn,zn |2 dx = lim

n→∞

∫
BR(0)

|(−∆)
s
2 Ũσn,zn |2 dx

≤ lim
n→∞

κ

∫
BR(0)

|∇Uσn,zn |2 dx = 0.
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Combining this fact, the definition of the map γ and (5.13), we have

γ(Ψσn,zn) =
1

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

|χ(x)− β(Ψσn,zn)||(−∆)
s
2Ψσn,zn |2 dx

≥ 1

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

|χ(x)||(−∆)
s
2Ψσn,zn |2 dx− |β(Ψσn,zn)|

≥ ρ

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3\BR(0)

|(−∆)
s
2Ψσn,zn |2 dx− ρ

2
+ on(1)

=
ρ

ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

|(−∆)
s
2Ψσn,zn |2 dx− ρ

2
+ on(1)

=
ρ

2
+ on(1).

(5.14)

By ∥hn∥ := ∥un −Ψσn,zn∥ → 0, (5.12) and Hölder’s inequality, we have, as n→ ∞,

|γ(un)− γ(Ψσn,zn)|

=
1

c∗ε

∣∣∣∣∫
R3

(
|χ(x)− β(un)||(−∆)

s
2un|2 − |χ(x)− β(Ψσn,zn)||(−∆)

s
2Ψσn,zn |2

)
dx

∣∣∣∣
≤ 1

c∗ε

∫
R3

|χ(x)− β(un)| ×
∣∣|(−∆)

s
2un|2 − |(−∆)

s
2Ψσn,zn |2

∣∣dx
+

1

c∗ε

∫
R3

∣∣|χ(x)− β(un)| − |χ(x)− β(Ψσn,zn)|
∣∣× |(−∆)

s
2Ψσn,zn |2 dx

≤ 1

c∗ε

∫
R3

|χ(x)− β(un)| ×
(
|(−∆)

s
2un|+ |(−∆)

s
2Ψσn,zn |

)∣∣|(−∆)
s
2un| − |(−∆)

s
2Ψσn,zn |

∣∣ dx
+

1

c∗ε

∫
R3

|β(un)− β(Ψσn,zn)| × |(−∆)
s
2Ψσn,zn |2 dx

≤
√
2ρ

c∗ε

{∫
R3

∣∣|(−∆)
s
2un|2 + |(−∆)

s
2Ψσn,zn |2

∣∣} 1
2

×
{∫

R3

|(−∆)
s
2 (un −Ψσn,zn)|2 dx

} 1
2

+ on(1)×
∫
R3

|(−∆)
s
2Ψσn,zn |2 dx

≤ C∥hn∥+ on(1)×
∫
R3

|(−∆)
s
2Ψσn,zn |2 dx→ 0,

where c∗ε := ε3−2s
(√

5−1
2

) 3−2s
2s

S
3
2s . Thus,

γ(un) = γ(Ψσn,zn) + on(1),

and so,

γ(un) >
ρ

2
+ on(1). (5.15)

But from un ∈ Ñεn , we have

δ1(εn) < γ(un) < δ2(εn), (5.16)

where δi(εn) → 0, i = 1, 2 as n → ∞, a contradiction to (5.15). Thus, {σn}n∈N is bounded,
and there exists some σ̄ ≥ 0 such that σn → σ̄, as n → ∞. Now, if σ̄ > 0, then we must have

that |zn| → ∞. Otherwise, Ũσn,zn would converge strongly in Ds,2(R3) and so it would wn.
Therefore, J1 has a nontrivial minimizer on N1, which contradicts to Lemma 3.4. Thus, for each
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R > 0, by the fact that limn→∞ |zn| = ∞ and due to Proposition 2.2 of Di Nezza-Palatucci-
Valdinoci [18] and Lemma 4.1 of He-Zhao-Zou [26], we have that

lim
n→∞

∫
BR(0)

|(−∆)
s
2 Ũσn,zn |2 dx = 0.

Therefore, we can obtain the estimation similar to (5.14), a contradiction to (5.16). By a similar
argument, we can show the boundedness of the sequence {zn}n∈N. So, (5.10) holds true.

Based on the above analysis, we can assume that zn → z∗ and σn → 0. By extracting
subsequences of {σn}n∈N and {εn}n∈N, still denoted as {σn}n∈N and {εn}n∈N, such that

σni

εni
=

oni(1) as ni → ∞, we may change {σni}n∈N by {εni}n∈N and relabel {εni}n∈N by {εn}n∈N.
Define

vn(x) := ε
3−2s

2
n wn(εnx+ zn).

Then vn → Ũ1,0 in Ds,2(R3) and we have

lim
n→∞

∫
R3

V (εnx+ zn)vn(x)
2 dx = lim

n→∞
ε−2s
n

∫
R3

V (x)wn(x)
2 dx = 0,

which shows that
∫
R3 V (z∗)Ũ2

1,0(x) dx = 0. Thus, V (z∗) = 0 and z∗ ∈ M, and so, zn ∈ Mµ for
large n. Returning to (5.12), we get

β(un) =
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

χ(x)|(−∆)
s
2 Ũσn,zn |2 dx+ on(1)

=
1(√

5−1
2

) 3−2s
2s

S
3
2s

∫
R3

[χ(εnx+ zn)− zn]|(−∆)
s
2 Ũ1,0|2 dx+ zn + on(1).

Since εnx+ zn → z∗ ∈M , we have that β(un) = zn + on(1) and the sequence {zn}n∈N is what
we desire. Consequently, (5.4) follows and the proof is complete. □

Proof of Theorem 1.1. For any fixed µ > 0, let ε = εµ > 0 be small. Therefore, Φ: [δ1, δ2]×M →
Ñε given by Φ(δ, z) = Φδ,z is well defined and by Lemma 5.2, we see that β(Ñε) ⊂ Mµ. By
(5.3), we infer to

β(Φδ,z) = z + oδ(1) uniformly in z ∈M.

For δ ∈ [δ1, δ2], we denote β(Φδ,z) = z+ϑ(z) for z ∈M, with |ϑ(z)| < µ/2 uniformly for z ∈M .
We introduce the map

H(t, (δ, z)) := (δ, z + (1− t)ϑ(z)).

It is easy to check that H : [0, 1]× [δ1, δ2]×M → [δ1, δ2]×Mµ is continuous. Clearly,

H(0, (δ, z)) = (δ, β(Φδ,z)), H(1, (δ, z)) = (δ, z),

which implies the map

H(δ, z) := (δ, β(Φδ,z))) : [δ1, δ2]×M → [δ1, δ2]×Mµ

is homotopic to the inclusion mapping Id: [δ1, δ2] ×M → [δ1, δ2] ×Mµ. Thus, applying the
Lusternik-Schnirelmann category theory [51], we have

cat(Ñε) ≥ cat[δ1,δ2]×Mµ
([δ1, δ2]×M) = catMµ(M).

By Corollaries 3.5 and 4.2, the functional Jε satisfies the (PS)c-condition on Ñε. Hence, the
Lusternik-Schnirelmann category theory of critical points shows that Jε has at least catMµ(M)
solutions. □
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