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ABSTRACT. In this paper we study the fractional Schrodinger-Poisson system
e25(=A)su+ V(z)u = ¢lul?s —3u + |u|% ~2u, z € R3,
€25(=A)6 = [ul 1, v e RS,

where s € (0,1), € > 0 is a small parameter, 2% = 3—625 is the critical Sobolev exponent

and V € L% (R3) is a nonnegative function which may be zero in some regions of R3, e.g.,
it is of the critical frequency case. By virtue of a new global compactness lemma, and the
Lusternik-Schnirelmann category theory, we relate the number of bound state solutions with
the topology of the zero set where V' attains its minimum for small values of .

1. INTRODUCTION AND MAIN RESULTS

This paper deals with the following fractional Schédinger-Poisson system with doubly critical
growth and critical frequency of the form

e25(=A)u+ V(x)u = dlul* 3u+ |u , x€R3,
25 (=AY = |u|> 1, x € R3,

2;-2,,

(1.1)

where € > 0 is a parameter, s € (0,1) and 2% = ﬁ denotes the critical Sobolev exponent.
Here, the fractional Laplacian operator (—A)® is defined as

(~A)'w(z) = C, PV. / Ju(z) —u(y)P?

rs |z —yl3ts 4 wES(R3),

where P.V. stands for the Cauchy principal value, Cy is a normalizing constant and S(R?) is the
Schwartz space of rapidly decaying functions. In (1.1), the first equation is a nonlinear fractional
Schrodinger equation introduced by Laskin [29] which appeared in fractional quantum mechanics
in the study of particles on stochastic fields modeled by Lévy processes, see Laskin [28], in which
the potential satisfies a nonlinear fractional Poisson equation. For this reason, system (1.1) is
called a fractional Schrédinger-Poisson system, also known as the fractional Schrédinger-Maxwell
system, as a model describing solitary waves for the nonlinear stationary fractional Schrédinger
equation interacting with the electrostatic field, which arises in many mathematical physics
context and which is not only a physically relevant generalization of the classical NLS but also
an important model in the study of fractional quantum mechanics. It is worth pointing out that
the fractional Laplace operator (—A)® becomes the classical Laplace operator —A as s — 17,
see Proposition 4.4 of Di Nezza-Palatucci-Valdinoci [18]. From a probabilistic point of view, the
fractional Laplace operator could be viewed as the infinitesimal generator of a Lévy process, see,
for example, Applebaum [5] and Bertoin [3]. This operator arises in the description of various
phenomena in applied sciences, such as plasma physics (see Kurihura [27]), flame propagation
(see Caffarelli-Roquejoftre-Sire [10]), financial (see Cont-Tankov [17]), anomalous diffusion (see
Metzler-Klafter [37]), obstacle problems (see Silvestre [17]), conformal geometry, and minimal
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surfaces (see Chang-Gonzélez [15]). For more details on fractional Laplacian operators we refer
the readers to Di Nezza-Palatucci-Valdinoci [18], Molica Bisci-Rddulescu-Servadei [38] and the
references therein.

Note that, even if s = 1, (1.1) reduces to the following classical Schodinger-Poisson system
with nonlocal critical term

—&2Au+V(z)u — dlulPu = f(u) + [ul*u, xeR3,
—&2A¢ = |ul®, r € R3,

(1.2)

which was of interest to a number of authors. Indeed it can be used as a model to describe
the interaction between a charge particle interacting with the electromagnetic field, and also in
semiconductor theory, in nonlinear optics and in plasma physics. We refer to Li-Li-Shi [30, 31]
for more details in the physics aspects. In 2020, Feng [19] considered (1.2) with f € C(R,R)
being subcritical growth and V' € C(R?, R) satisfying the global condition

(V) Vo =liminf V(z) > Vj = inf V(z) > 0.

|z]—o0 z€R3

This condition was first introduced by Rabinowitz [44]. By employing the concentration-
compactness principle and the mountain pass theorem, Feng [19] proved the existence of positive
ground state solutions under condition (V) and under some appropriate subcritical growth con-
ditions on the nonlinearity f. Almost at the same time, Feng [20] revisited problem (1.2) (with
e = 1), when the potential V is neither coercive nor periodic and asymptotic periodic. Based on
the modified concentration-compactness principle and the mountain pass theorem the existence
of ground state solution has been shown.

There are also some papers concerning the Schrédinger-Poisson system with nonlocal critical
term, but without the Sobolev critical term |u|*u. Li-Li-Shi [30, 31] studied the existence of
positive solutions to the following Schrodinger-Poisson-type system with nonlocal critical term

{Au + bu+ qolufPu = f(z,u), z€R3,

1.3
—Ag¢ = |ul?, z € R3, (1.3)

whereby the proofs are using variational methods which do not require any compactness con-
ditions. Moreover, Guo [23] obtained two positive solutions of (1.3) if b = 0, ¢ = —1 and f
is a sublinear term of the form AQ(x)|u[P~2u by applying the Nehari manifold and variational

methods. In [35], Liu investigated the following Schrédinger-Poisson-type system
—Au+V(2)u — K(x)p|lul*v = f(z,u), =cR3 (1.4)
—Ap = K(@)uf, v e R, |

and obtained the existence of positive solutions by using the mountain pass theorem and the
concentration-compactness principle. Furthermore, Li-He [34] studied the existence and mul-
tiplicity of semiclassical state solutions for (1.4) by using variational methods along with the
Lusternik-Schnirelmann category theory.

From another perspective, systems (1.2), (1.3) and (1.4) can be rewritten as the following
Choquard-type equation

—?Au+V(z)u= e *(Io * F(u))f(u) + h(u), =R, (1.5)

which was introduced as an approximation to the Hartree-Fock theory of one component plasma,
where [, stands for the Riesz potential. Such a class of equations was already proposed by Pekar
in 1954 in [41] to study the quantum theory of a polaron at rest. Later, by using symmetry
decreasing rearrangement inequalities, Lieb [32] investigated the existence and uniqueness for
a class of nonlinear Choquard equation. Recently, Cassani-Zhang [12] showed the existence
and concentration behavior of ground state solutions for equation (1.5). Under appropriate
conditions on a and f, Alves-Yang [1] presented a new concentration behavior of solutions for
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(1.5) through variational methods. By means of a new nonlocal penalization technique, Moroz-
Van Schaftingen [39] proved that (1.5) admits a family of solutions concentrating to the local
minimum of V.

Note that in the aforementioned Schrédinger-Poisson systems in (1.2)-(1.4), the second equa-
tion has a nonlocal critical growth in the sense of the Hardy-Littlewood-Sobolev inequality. On
the other hand, the following classical Schrédinger-Poisson system

—Au+V(z)u+ K(z)pu = f(zr,u), x€R3,
~A¢ = K(x)u?, xr € R3,

with the Poisson equation being square growth, has been studied extensively by many authors
over the past decades. As a model describing the interaction of a charge particle with an electro-
magnetic field, it arises in many mathematical physics context, see, for example, Benci-Fortunato
[7]. The existence and multiplicity of solutions for the Schrédinger-Poisson system (1.6) under
variant assumptions on V, K and f has been widely investigated by numerous authors, which
have been developed many effective methods to study equations or systems with nonlocal terms.
We refer the readers to works of Ambrosetti [2], Ambrosetti-Ruiz [3], Azzollini-d’Avenia-Vaira
[6], Cerami-Vaira [13], Ruiz [15], Wang-Chen-Liao [19], Zhang-Ma-Xie [541] and the references
cited therein.

For the case s € (0, 1), only few recent papers considered the fractional Schrédinger-Poisson
system like (1.1). It is a fundamental equation in fractional quantum mechanics in the study of
particles on stochastic fields modeled by Lévy processes, see Caffarelli-Silvestre [11] and Laskin

(1.6)

[28, 29]. Zhang-do O-Squassina [53] considered, by using a perturbation approach, the existence

and the asymptotical behaviors of positive solutions to the fractional Schrodinger-Poisson system
(=A)u+ V(x)u+ K(x)pu = f(x,u), =€ R3, ()
(Al = K(z)u?, r € R3. .

with V(z) = 0, a parameter K(z) = A > 0, and a general subcritical or critical nonlinearity f.
Teng [48] studied the existence of ground state solutions of (1.7) with K(x) =1 and f(x,u) =
plu w4 |ul?~2u,q € (2,2F), by using the Pohozaev-Nehari manifold, the monotonic trick
and the global compactness lemma. For further results on the existence and multiplicity of

semiclassical bound states of (1.7), we refer to Liu-Zhang [36], Murcia-Siciliano [40] and Yang-
Yu-Zhao [52], see also the papers of Ambrosio [4], Chen-Li-Peng [16], Ghimenti-Van Schaftingen
[22], Guo-Li [24], Zhang-Zhang [55] and the references therein.

Recently, Qu-He [13] studied the following fractional Schrodinger-Poisson system with doubly
critical growth

{523(—A)su F V(@)= dlu|Bu+ |u? 2+ f(u), z € RS, 18)

(A = |u*>1, z € R?,
and showed the existence and multiplicity of concentrating solutions by using the Nehari mani-
fold and the Lusternik-Schnirelmann category theory. In 2021, He [25] obtained a mountain pass
solution to (1.8) (if € = 1) with the help of the concentration-compactness principle. Feng-Yeng
[21] considered a class of fractional Schrodinger-Poisson type systems with doubly critical terms

{(—A)Su + V(@)u — ¢lu/® Pu = K(z)|u*%u, zeR3,

(—A)p = |u 2.-1 x € R3, (1.9)
where s € (3,1), V € L#(R%), K € L™(R%) and inf,cps K(z) = Ko > 0. By applying the
concentration-compactness principle and variational methods, the authors derived the existence
of one ground state solution to the system (1.9). We remark that the novelty of (1.8) and
(1.9) is the fact that the second equation has nonlocal critical growth and is driven by the
nonlocal operator (—A)®, which makes the study of problem (1.8) and (1.9) more interesting
and challenging. As we already observed, the previous results on the existence and multiplicity
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of solutions for systems (1.8) and (1.9) were mainly focused on the existence of ground state
solutions under the condition (V). A natural question arisen spontaneously is that, whether or
not it admits multiple high energy solutions for (1.9) with critical frequency, that is, V() > 0,
V # 0 on R3, and doubly critical growth. This is still an open problem and the purpose of
this paper is to fill this gap. To be more precise, we would like to establish the existence and
multiplicity of bound state solutions to (1.1) when V is of critical frequency case.

Throughout this paper, we suppose that V satisfies the following assumptions:

(V1) V € L3 (R3) and V(-) > 0 on R?;

(V3) the set M = {z € R® : V(z) = 0} is nonempty and bounded.
Based on the assumptions on V() above, it is easy to verify that the following equation can be
seen as the limit equation of (1.1):

e25(=A)u — ¢lu|® 3u = |u u, x€R3,
e25(=A)¢ = |u 2.-1 z € R3.

2F—2

(1.10)

In the sequel, for each € > 0, we define the energy functionals associated to (1.1) and (1.10) by

Je and J¢ o, respectively,
J (u):—/ |(—A)§u|2dx+1/ V(:c)|u|2d:c€28/ ¢ |u2:71dx—i/ u|? dz
c 2 Jgs 2 Jgs 2025 — 1) Jgs 2 Jps ’
g

. —2s . 1
Jeoo = — —A)2 2d _ £ / . 23_1(31 _7/
o) =5 [emtpar- s [t o [

where ¢, is given in (2.1). Furthermore, we introduce the Nehari manifold associated to J., Je, oo,
respectively, as

Nz ={u e D**(R*)\ {0} : J(uw)u=0}, NZ={ueD¥*R*\{0}: J. (u)u=0}.

For every ¢ > 0, we define the infimum

2s o*
s dzx,

me := uien/\ffa Je(u) and m = ueij{l/f,oo Je oo ().

If Y is a closed set of a topological space X, we denote by catx (Y) the Lusternik-Schnirelmann
category of Y in X, namely the least number of closed and contractible sets in X which cover
Y. For any fixed p > 0, denote M, = {z € R?® : dist(z, M) < pu}. Now, our main result can be
formulated as follows.

Theorem 1.1. Let s € (3,1) and suppose that the conditions (V1), (Va) are satisfied. Then,
the following properties hold:

(i) me = mS° and m. is not achieved, for each € > 0.

(ii) For any fized p > 0, there exist €, > 0 such that for any € € (0,e,), system (1.1)
possesses at least catyy, (M) bound states in D*?(R3).

The proof of Theorem 1.1 is of variational character. From a technical perspective, the
characteristics of the double non-localities from nonlocal critical convolution term ¢, |u|? ~3u
and the Sobolev critical term |u|% ~2u in system (1.1) make it more complicated to deal with the
convergence of (PS)-sequences, due to the lack of compactness for the embedding D%2?(R3) —
L% (R3). Moreover, it is difficult to check the (PS).-condition since the nodal solutions of (1.1)
no longer has the double energy properties, as we know the energy doubling characteristic plays
a key role in proving the main results, see, for example, Chen-Li-Peng [16], Qu-He [42] and
Zhang-Zhang [55]. In order to overcome these difficulties, we shall employ some ideas from Qu-
He [43] and establish a new global compactness lemma in the fractional case and some estimates
become more subtle and delicate to be established. We shall construct two barycenter functions
and use the Lusternik-Schnirelmann category theory to obtain the desired results. As far as
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we know, the multiplicity of high energy solutions for system (1.1) has not been studied in the
literature.

The paper is organized as follows: In Section 2 we give some preliminary results while in
Section 3, we introduce the corresponding limit problem and prove some useful lemmas. In
Section 4, we present a new global compactness lemma which describes the behavior of (PS)-
sequences and we regain the compactness if the functional energy lies in a suitable interval. In
Section 5, we first define two barycenter functions and give some necessary estimates. Then, we
give the proof of Theorem 1.1 by means of the Lusternik-Schnirelmann category theory.

2. NOTATIONS AND PRELIMINARY RESULTS

To begin with, we present some notations which will be used throughout this paper. First,
we denote by C,C; > 0,4 = 1,2,---, different positive constants whose values may vary from
line to line and are not essential to the proofs of our results. We denote by LP = LP(R?) for

1

p € (1,00] the Lebesgue spaces with the standard norm |ull, = (fgs [ul? dz)”
We recall that the fractional Sobolev space D*?(R?) is defined as

D*2(R®%) = {u e L% (R?) : /R3 [(=A)3u?dz < oo} :

equipped with the norm

S lutz) — uly)?
= [ oyt o= [[ BP0

see Di Nezza-Palatucci-Valdinoci [18] and Molica Bisci-Riddulescu-Servadei [38]. The Sobolev
embedding D*2(R?) < L% (R®) is continuous and the best constant S is given by

L LlCA)up
: R
u€Ds2(R3)\{0} (IRB |u 2% dx) 2%
see Servadei-Valdinoci [16]. By the Lax-Milgram theorem, we know that for each u € D*?(R?),

there exists a unique solution ¢ = ¢, € D*?(R?) such that (—A)®@, = |u|> ! in a weak sense.
The function ¢, can been expressed explicitly as

S:

o) = K, [ TP

dy, VazxeR3, 2.1

wo lo— gz 0 T 2

where K, = 7 22725T(3 — 25)(I'(s)) ", see He [27] for example. The function ¢, has the
following characteristics, see Qu-He [43] for the proof.

Lemma 2.1. Let u € D%%(R3), then the following hold:
() Gpu = t>"1p, for all t > 0.
(ii) For any u € D%2(R3), we have ||¢y|| < S™2||u

/ Du 2§71dl’§57% (/ |u
R3 R3

(iii) If u, — u in D*>2(R?) and u, — u a.e.in R3, then ¢, — ¢, in DS2(R3) and ¢, —
Gur—u — u — 0 in D2(R?).
(iv) If up — u in DS?(R3) and u,, — u a.e.in R3, then

/ ¢un xf/ (z)u,,,—u‘un*uQ:ildx*‘/ Qbu
R3 R3 R3
nd

Dun, un|2:_3un - (bunfu|un —u 2:_3(

in (D$2(R3))*, where (D*2(R3))* denotes the dual space of D*?(R3).

251
2 and

2% 1

. E 221
d) Igull < S~ ul2% 0.

Z-1dz — 0,

Uy — 1) — Gulul® Pu—0
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Lemma 2.2. IfV € L%(RS), then the functional

is weakly continuous in D*?(R3).

Proof. The proof is analogous to that of Lemma 2.13 in Willem [51], we sketch it here for
convenience. First, the functional G is well defined by Holder’s inequality. Let u,, — u be
weakly in D*2(R?). By virtue of the continuity of the Sobolev embedding D*?(R?) «— L% (R?),
we see that u, — u weakly in L% (R?®). Thus, u2 — u? weakly in Lﬁ(R?’). Notice that
Ve L2 (R3) = (L%(Rd))* Consequently,
V(z)u? dr — V(z)u?dr asn — oo,
R3 R3
which completes the proof. O

At the end of this paragraph, we introduce the following version of the Hardy-Littlewood-
Sobolev inequality, see Lieb-Loss [33].

Proposition 2.3. Assume thatt,r >1 and 0 < a < N with 1/t +a/N +1/r =2, f € L}({RY)
and h € L™ (RYN), then there exists a sharp constant C(t, N, a, ) independent of f,h satisfying

// — Laway < C(t.N. )| £l (2.2)
R2N |J) ‘

Ift=r= then

2N a’
(N —5) (T(N)
In this case there is equality in (2.2) if and only if f = Ch and

h(x) = A(6% + |z — xo|*) ™
for some A€ C, 5§ € R\ {0} and zo € RY.

C(t,N,a,r) = C(N,a) =72

2N|1

3. LIMIT PROBLEM
From the assumptions (V1) and (Vz), the limit equation of (1.1) takes the form as

{625(—A)5u — ¢|u|*2:_3u = |u|?*2u, zeR3, (3.1)
e25(=A)Sp = |ul? 1, x € R3.
Recall that for each € > 0, we have the Nehari manifolds

N.={ue D3R\ {0} : J.(u)u = 0}, NX={ue D*2(R3)\ {0} : JL o (u)u = 0},
and for each € > 0, we define the infimums

me = uienjiffg Je(u) and m = inf Jooo(u).

uENs oo

Now, we study the correspondence between the ground state solutions of (3.1) with ¢ = 1,
ie.,

{(—A)Su — dlul® 3w = |u|*%u, xRS, (3.2)
(A)¢ = z € R3,
and the ground state solutions to the following equation

(=A)u = |u|*2u, zeR> (3.3)

The following observation is useful in the energy estimation of the corresponding functionals.
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Lemma 3.1.

(i) The ground state solutions of problem (3.2) and problem (3.3) are one-to-one correspon-
dences.
(ii) Assume that u, ¢ are positive solutions of (3.2), then we have

w(z) = () = Usay (z) := kUs 4, () for some 2o € R® and 6 > 0,
where the function

Us zo () := A0 =
P (2 4 e — zo?)

solves (3.3) with the numbers

g - S3/(2S)F(3) == 3 \/57 1 TS
* = \1B20(3/2) AR N '

Moreover, Us 5, satisfies

||U5,Io ||2D*2 = HU(S»:EO

; — G5,
Proof. (i) Assume that wi(x) is a solution of problem (3.3), then

wa () = Dy, w1 (),

2—-2% 1 fRa ¢u;1 ‘wl ‘2:_1 dz
D%~ 214 ,/1+4 _ 3.4
1 2( W MR ST .9

solving problem (3.2). For any solutions wii(z) and wia(x) of problem (3.3), if Dy, wi1(z) =
D, ,w12(x) holds, then we infer to

where D,,, is given by

Dy,
wll(x) = D 12’1012(%).
w11

Since both wq;(z) and wya(z) are solutions of problem (3.3), we have D,,,,/D,,, = 1 and hence
wi1(z) = wi2(z). On the other hand, assume that wy(z) is a solution of problem (3.2), then
)

w (2) = Ty, wa(x
solves problem (3.3), where T,,, > 0 fulfills

T11212272 _ fRS ¢w2|w2

2-1dx + Jgs lwo|? da
Jgs |wa]? da '

Dy, T.,
From the observations above, we infer that wi(x) —% wa(z) — wy(z).
(ii) Now, we introduce the following equation

{(A)su = $lu|*Pu, xeR3,

2:-3,,

(=A)° ¢ = |ul>1, xz € R3. (35)

Assume that u, ¢ are positive solutions for (3.5), then
(—A) (u=¢) = (¢ —u) [u]** 7%, zeR”.
Multiplying both sides of this equation by (u — ¢) and integrating by part gives

[t @ Pdet [ (- o ufi 2=,
R3 R3
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Hence we can conclude that © = ¢ = Uy 5, and so, (3.3) is equivalent to (3.5). Thus, the function

Us s, satisfies
Zrlde :/ |Us
R3

Us zo(2) := 03
P (@ e — zo)

Now, testing (3.4) by wi(x) = Us 4, (z), by a direct calculation, we obtain

2 dz = §7, (3.6)

|(—A)E U 4o ? dar = / 603 oy Us.an
R3 R3

taking the form

Dy, = (ﬁ; 1) N = K. (3.7)

Therefore, the ground state solution of (3.2) has the form

wa(z) = (75@0 (z) := kUs 1, (z) for some zo € R? and ¢ > 0.
The assertions follows. O

Remark 3.2. From (3.6) and (3.7), by a simple computation, we have that

N Vo1 = A
1Us.ao > = ( 52

2

3—

and U, (x) =€ 2

- (7573,0 (x) is the unique ground state solution of equation (3.1).

Lemma 3.3. The infimum mZ2° is achieved by Us , () = e5 2 Us o () with

. R AV %3[12“1—\/5)(3—28)] el
mge = JE,OO(U67$0) - 63 < 2 > 6(3+28) S

Proof. By Lemma 3.1 and Remark 3.2, we see that
X 8-2s ~
Us 2y () = €7 Us .o (7) (3-8)

is the positive ground solution of equation (3.1). Moreover, by (3.6), (3.7) and (3.8), a direct
computation shows that

Je 00 (Us 2)
53 s ~ 63 ~ « 53 ~ -
= —A)2Us 4|2 dte — ——— = |Ueaol*7td ——/ Ue.op? d
9 ]R3|( ) d, 0| €z 2025 — 1) /]R3 (bUE,mO‘ g, 0| €L 2* ]R3| g, 0| €T

K2

2% 1 : 2*

sThdx — 2*/ U57x0|5dx>
s JR3

H2(2s 71)

2
_ 3K _AVUs. 12d _7/ U
(5 L8t g | oo,
53<K;Sz?s_’%2(2:_1)52?5_m235235)

s </<;2 R22-1) 2
=€

O

oo

Lemma 3.4. Suppose that the conditions (V1) and (V) are satisfied. Then me = mS° and m.
s not attained.
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Proof. Let u € D*2(R?), we define the function
W(t) = (L (tu), tu)
— e [ cayiuPde+ 2 [ Vie?de — e 22D / Gulul® ! da
R3 R3

R3
—tQ:/ |ul% da
R3

= at® — btPes — ct?s,
where
a :/ (e%)(=A) 2ul® + V(z)u*)dz, b= 5_28/ Gulu/*'dz and c=
R3 R3 R3

It is easy to check that there exist unique ¢(u) > 0, s(u) > 0 such that t(u)u € N, s(u)u € N
and

2 dz.

Jo(t(u)u) = max Jo(tu),  Jeoo(s(u)u) = max Je oo (tu).
Moreover, for each u € A, we derive that
me® < Je oo (s(u)u)

2(2;-1)
7572 | / d) | ( )| 2% dz
s R3

consequently, one has
m < me. (3.9)

Let w be a positive solution of (1.10) centered at the origin and take a sequence {x,, }nen C R3
such that |2,| — 0o as n — 00. Set wy(z) = £ 2 w(x — x,) and t,, = t(wy). Clearly, w, — 0
in D*?2(R?) and by Lemma 2.2, we have

/ V(z)w? dz — 0.
R3

At this point, we have

t2€25 t2 725 t 2(2X—-1)
Ja(tnwn) == HwnH2 + lo”(l) - | |— / stn

2 2
L 2 (3.10)
— [tn n 2 da.
25 Jrs
Since w,, € N2° and t,w, € N, we have
2% ||wy||? = 5_28/ Buo, [ | L da —|—/ wp|? d, (3.11)
RS RS
and
2542 ||wy || + ti/ V(z)w? dz = e~ 254221 Lldg 4% Zode. (3.12)
R3

From (3.11) and (3.12) it follows

525 {ti@:—ﬁ o 1] ||wn||2 [ti -2 ti@:—?)} 2% do = V(l’)u)i do = On(].),

R3
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which implies that ¢, — 1 as n — co. By (3.10), we arrive that lim,_,« J-(w,) = mS°. Hence,
we deduce to m. < m2°, and then m. = m2° by (3.9).

Next, we show that m. cannot be achieved. Assuming the conclusion is not true, then there
exists ug € N such that J.(ug) = me = m2°. Therefore, by s(ug)ug € N2°, we infer to

me® < Je oo(s(uo)uo)

< l|s(uo)uo||* + / V(z)|s(ug)uo|? dz

— / ¢s(uo)u0 UO)’UJO %= 1 / ‘ uO UO %

—J((UO)U0)<J( 0) =m.

Inevitably, we conclude that

/ V(2)|s(uo)ug|*dz =0, s(ug) =1 imply ug=0 onR*\ M.
R3

e
2

Therefore, ug € N> with J.(ug) = m2. Then, by Lemma 3.3, ug(z) = & 2 Us 4, (z) > 0 for
all x € R? and for some § > 0, xy € R?, which contradicts ug =0 on R3\ M. O

Corollary 3.5. Let ¢ > 0 and {up}tnen be a (PS).-sequence of J. restricted on N.. Then
{untnen is a (PS).-sequence of J. in D*2(R3). If u is a critical point of J. restricted on N,
then u must be a critical point of J. in D**(R3).

Proof. If {uy }nen is a (PS)-sequence of J; restricted on N, then we have

) . —2s
cron) =g [ Al Vil b gy [ o,

€Z,

and

0= [ EU-A 4 V@) dr e [ u ol dr = [ de
R3 3 ”

Consequently, we obtain

¢+ on(1) = (; _ ;) /R (625 (= A |? + V(@) |un 2] dz

1 1 -
PN u n s d
(5 gm ) Lo

Thus, {un}nen is bounded in D*2(R3). By virtue of u, € N. and by Lemma 2.1, we derive
that
525/ (—A)iu, 2 de
RS

<2 |(_A)%un|2dx+/ V(@)|un]? dz
R?)

/ b
21 - . =
35—255—23( |(—A)5un2dx) L5 % (/ |<—A>zun|2dx) :
R? R?

which implies that

2(2

“ldz + Zde <e 28~ )y [, 3

o*

*
2% —2

27 -2 « 2
25 ( |(—A)§un2dx) +8F ( |(—A)§un|2dx> > e,
R3 R3
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Hence
3—2s

. -1\ =
|(=A) 5 u, |2 dz > (‘/5 ) GsgB2s, (3.13)
R3

2

On the other hand, by the Lagrangian multiplier rule, we have for A\,, € R such that
on(1) = Ji(un) — M FZ(un),
with F.(u) = J.(u)u. Since {u,}nen is bounded in D*2(R?), we get
on(1) = JL(up)un — M FL(un)ty = = A FL(up)uny,
In view of 2% > 2, and by (3.13), we infer that

Fl(up)un, = 2¢2%s |( )5un|2 dx+2/ Vix )uidx

2 ‘*S/’¢%hmﬁ 72:/
RB

= (2—2:)525/ \(—A)%un|2dx—|—(2—2§)/ V(m)\un\de
R3 R3
—2s

+(2-2%)e (3.14)

(2-27%) / \ A)zu,|* de
_1 25
sp—2ﬂ<”2 ) e g

As a result, A, = 0 as n — oo. Moreover, using the boundedness of {u, }nen, we deduce that
{F!(un)}nen is bounded. So, J.(u,) — 0 as n — oo and then {uy }nen is a (PS).-sequence of
J. in D*2(R3).

Now, if u is a critical point of J. restricted on N, then there exists A € R so as to J.(u) =
AF!(u), and

0= F.(u) = J.(u)u = \F.(u)u.

By the same calculation as in (3.14), we can obtain that

3—2s

fymuswzy<“2]> g2 <

Hence, A = 0 and so, J.(u) = 0. O
4. A GLOBAL COMPACTNESS LEMMA

In this section, we intend to establish a global compactness lemma, which is useful in the
analyzing the decomposition of the (PS)-sequences, and proving its compactness.

Lemma 4.1. Let the conditions (V1), (Va) be satisfied and let, for each ¢ > 0, {up}nen C
D%2(R3) be a (PS)-sequence of J. at the level ¢ > 0. Then, replacing u, with a subsequence if
necessary, there exist a number k € N, sequences of points v}, --- 2% € R® and radiir},--- ¥
such that the following hold:

(i) v =wu, — u® in DS2(R3);

) = (! ), g i DR, 1,2,k

)
(i) [Junll® = 35— llu?]|?;
(iv) Je(un) = Jo(u®) + Y5 Je oo (u?),
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asn — oo, where u’ is a solution of equation (1.1) and u?,1 < j < k, are the nontrivial solutions

of equation (1.10). Moreover, in case k = 0 the above holds without u’.

Proof. Let {u, }nen be a (PS).-sequence for J.. Then, {u, }nen is bounded in D*?2(R3). Thus,
we may extract a subsequence of {uy, }nen, still denote by itself, such that u,, — u® in D%?(R3)
as n — oo and u, — u® a.e.in R®. Moreover, J/(u’) = 0. Indeed, for each p € C§°(R3), we
have

Jé(un)cpze%/ (fA)%un(fA)%godz+/ V(z)unpda
R3 R3

s Buppdr — L2y, da.

By Lemma 2.1, it follows that ¢,, — ¢y0 in D*2(R?) and then ¢, — ¢yo in L (R3). Thus,

J

In view of u,, — u a.e.in R? and using Holder’s inequality, we infer to

J.

2% 2% (2% -2) 2; 2% (2*—2)
2F—1 2% -1 —1
<cC <|¢un|2f 21 + |unl2 21 u 0|2* ) <C.

012=3u% — 0 asn — oc. (4.1)

2*

bu.( zifsu —|u 0[2:-3 o) RN

T

2
By Proposition 5.4.7 in Willem [50], one has ¢, (|un|* 3 %73y) — 0in L= -1 (R3) and

then

Up — |u®

—ul)% 300 pdz — 0 as n — .

This together with 4 1) 1mphes
/ bu, [tn|® Punpdz — / B0 [ul|?
R3
23
0120240 in L2-T(R?), we have

2&_2un<pdx—>/ [u®|?: ~2ulp du.
R3

<TBupdr  asn — o0o. (4.2)

.
2-2

Since |u,

Therefore, combining (4.2) with the weak convergence of u,, — u® in D*2(R?), we derive to
JL(u)p = lim J.(up)p =0 forall o € C5°(R?).
n—oo
This implies that J.(u®) = 0 and w is a critical point of J. by the density of C§°(R?) in D*?(R3).
Set
vl () = up(z) — u’(2).
Applying the Brezis-Lieb Lemma [9] and Lemma 2.1 (iv), we can easily deduce that
o o*
Rl = lun 2 = 16012 + 00 (1), ohll3: = llunll3: = Ilull3: + 0a(1), (4.3)

Je(v)) = Je(un) — Js(uo) + 0n(1),
and

JL(v) = JL(un) = JL(u®) + 0n(1).
By v} — 0in D*?(R?) and Lemma 2.2, one has

/ V(@)olPde = on(1) and / Vzyledz = on (D)ol
R3 R3
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for each ¢ € D*2(R?). Consequently, we arrive that
JE’OO('U;) = Js(vrll) +on(1) = Je(un) — Je(u) + 0,(1)
Jé,oo(vvlz) = Jé(v'rlz) + On(l) = On(l)

If v} — 0 in D*%(R3), then we are done. If v} - 0 in D%2(R3), then there exists n > 0
satisfying

(4.4)

Jo(vl) >n>0. (4.5)
We claim that there exist two sequences {r, }nen C RT and {y,, }nen C R? verifying

hy, = (vl)rmyn —w#0 in Ds’z(RS'),

n

where (V). ., = rnTSleL(Tna: + yn). Indeed, by (4.4) we get
P = [ ool ot [k dotou()
R3 R3
and

1 1 * 1 1 .
Iy —2s ([ = _ 11271 - 127 1).
J€,00<vn) € (2 2(22 7 1)) /]R3 ¢U%|Un dx + (2 2:) /1;3 |Un| dx + On( )

Combining (4.5), Lemma 2.1(ii) and the boundedness of {u, }nen, we obtain that

271
2: < l)l7

0<d; < vl

for some dy, D1 > 0. Now, we introduce the Lévy concentration function

Qn(r) := sup / vl |2 da.
B, (z)

z€R3

6
In view of Q,(0) = 0 and Q,(cc) > d;**", then there exist sequences {r,},en C RT and

{Yn}nen C R3 50 as to
Sup/ Jvn - do =/ [op ] da = b,
2€R3 J B,.(2) By, (yn)

6 S 6s6—3
. 3%2s
O<b<rmn{d1 ’(203,5D1) }

Recalling that h,, = (v})r, 4., without any loss of generality, we may assume that h, — h in
D%%(R3) and h,, — h a.e.in R3. A simple calculation yields

sup / | (2)[% da = / |hn(2)]% dz = / v}
2€R3 J By (z) B1(0) By, (yn)

By virtue of the invariance of the D*?2(R3)-norms under translation and dilation, we have

2% 27 *
L L e A L
R3 R3

which lead to
Ja,oo(hn) = Ja,oo(vyll) = Ja,oo(un) - Ja,oo(uo) + On(l)7 (47)
and by (4.4), we get

where

% dx = b. (4.6)

-1y,

Tt oo () = JL oo (V) = 0n(1).
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If h = O then h,, — 0 in L? (R3). Suppose that ¢ € C§°(R3) such that suppt) C By (y") for
some y° € R3 and |Vi(z)| < C for all z € R?, and we obtain

fom? = [ 12 |xf e azay
[ 0 =) =)o, (1)
RS

o=y

DI ()l (1)
//Rs e

By Holder’s inequality, we have

[9(@) ~ 6 R (@) ha(y)
/1. |x—y|3+2s dedy

(//R |3+|ZL2( da dy) (//R |3+|Zz2( >dxdy)%.

We claim that

OIRAC DIRAO)
RS |x—y\3+28 dxdy— - \x—y|3+28 dz dy = 0,(1). (4.10)

To this aim, we derive out

(2 (y)[*ha (x)
dzd
L= |x—y»3+2e dy
2h2
By ST
Bi(y Bi1(y°) |.’1?—y|

2h2
f [ B0l
Bi(y) J B (50) |93 — |

_ 2 _ a2
B1(y?) B1(y°)

o =y

(4.9)

1
+C h2(z dx/ —d
By (@) (o) T — g Y
2

2 2 oo
<C B2 (z)d L dar+C h2 (x)d / L4
- 1/31<y°) n(®) m/o prs T Bi(y°) () de o
SC’Q/ h2(z)dz — 0
B1(y)

as n — 0o, by virtue of h, — 0 in L? (R?), where 7 = 7(y) € (0,1). By a similar argument, we

loc
can prove

DIERW) 44y 0 4.12
. \xf |3+2S rdy — as n — o0o. (4.12)

By (4.8)—(4.12), we have
ot = ] Cle) = O le) =D 4, 4,1,

|z — y[3+2s
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Therefore, combining the results above and Proposition 2.3, we have
eS| ¢hall3. < e*|[vha|?

_ s / / (hn () = hn () (W* (@) b () — ¥ () 2 (1))

o= ofFFe
_ 523 / d)hn
R3

S EQSCS,Sth

dz dy + 0,(1)

|2 2% da 4 0, (1)

342s

2% —1 2% _1 ,2\=b__ ©
2 (/ (|hp |75~ 0p%) 33 dm) +0,(1)
: RS

*_ 6s—3 6
g;‘;‘ 1 |hn|3—2s 3+2s
s RS

21 ( / [h [ daz) / I

° RS B1(y°)
2s 6s—3
S{-} CS,Sle 6 W)hn
R3

342s

6
= e2°Cy || hyib| 5425 dx) + on(1)

65—3

6
% dx) +0,(1)

S 52803,5 |hn

3—2s

. 5 1
% dx) +o,(1) < 55235||z/;hn

%;‘ + On(1)7
which shows that h, — 0 in LZQEC(R?’), a contradiction to (4.6). Thus, h # 0. By (4.4) and the
weakly sequentially continuity of J. ., we deduce J. . (h) = 0 and so {hn}nen, {rl}nen and
{yl}en are the required sequences.

By iterating this procedure, we have the sequences v} = u/~! — /=1 j > 2, and the re-
scaled functions uj, = (vfl)ﬂl ;= u? in D*2(R3), where u? is a nontrivial solution to (1.10).

Furthermore, by (4.3), (4.4) and (4.7), we arrive at

j—1
g |1 = 03117 = llad, 12 = 1w P+ on (1) = -+ = flunl|* =Y [w[|* + on (D),
=0
and
JE,OO(U%,) = Js,w(vi,) = Js,w(uﬂil) - Je,m(ujil) +on(1)
j—1
== Je(un) = Jo(u®) = D e o(uf)
i=1
Since

2 dx

N e el
R

L1z — / |u?
R3

> 525||uj||2 _ 6—255«—2: ujH2(2:—1) _ S—%nu] 2:’
we conclude
3—2s
) 5 _ 1 2s
”u]”Q Z ([2 ) S%EB_QS,
and the iteration must stop at some index k > 0. O

Corollary 4.2. If {up}tnen s a nonnegative (PS).-sequence for J. with ¢ € (mg,2m.), then,
for each & > 0, {uy}nen is relatively compact in D%?(R3).
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Proof. It follows by Lemma 4.1, that there exist a number k& € N, a solution u® of (1.1) and
solutions u',--- ,u® of (1.10) fulfilling

k
||un||2%2||u3||2 and  Jo(un) = Jo(u0) + D Jeoo(u?) =+ 0n(1),
j=0 j=1

as n — 0o. By Lemma 3.4, if u° is a nontrivial solution of (1.1), then J.(u®) > m.. Noticing
that, for each nontrivial solution u? of (1.10), whether u? is positive or negative, then we have

o e (VE-1) T s24(-VBB-29]
Je’m(“)s?’( 2 ) 6(3 + 25) 5%

If v/ is a sign-changing solution of (1.10), we can easily deduce that

Js,oo(uj) > 2me,

£

see Zhang-Zhang [55]. Since
me < ¢ < 2meg,

we must have k = 0, which implies that u,, — u® in D*?(R3). O

5. PROOF OF THEOREM 1.1

In this section, we focus our attention in showing the multiplicity of high energy semiclas-
sical states by means of the the Lusternik-Schnirelmann category theory. We begin with some
preparations. For small 1 > 0, we may take p = p(p) > 0 such that M, C B,(0). Set

(2) z if |z] < p,
X\x) = z .
|”7| if |z| > p.

We define 3: N. — R3 and v: M. — Rt by

1 S
Blu) = [ x@I8) P d,
£3—2s (\/5—1) 2s S% R3

and

v(u)€3_25< = /| W[|(~A)5ul? da.

It is not difficulty to see that, for any fixed U5’Z € D*2(R3), there exists a unique ¢, in (0, +00)
such that

B5.(z) i=tg.e 7 Us(x) € Ne.
We define the set
L' =T(p,01,01) == {(2,0) € R* x R : [a| < p/2,61 < & < &a}. (5.1)

A direct calculation shows that, for any fixed z € R3, we have
/ V(x)lj?z(x) dz—0 asd—0.
RB

Thus, for each € > 0 and any fixed z € R3, we derive that lims_, ts,. = 1. So, for each ¢ > 0,
there exist d; = 01(¢) and do = do(e) with d; < Jp and 01,52 — 0 as e — 0, satisfying the
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inequality
Sup{Je((I)t?,z) : (276) € A}

3—2s

o ((5) 7 gt ).

where h(g) = 0 ase — 0.
Lemma 5.1. There holds lims_.o v(®5,.) = 0 uniformly for [z| < §.
Proof. Let £ > 0 be such that 0 < 2¢ < p. By t5, = 1+ 05(1), we have

1 i
VPs2) = ———5= / IX(2) = B(®5.)[|(=A)2Us - |* dz + 05(1)
\/5271) 2s 5123—5 R3

— [ @) - B0 [(-8) D do
(L) 7 s S
e [ @) = (@) [(~8) 2T da + 0s()
=1 + I+ o05(1).
By Lemma 4.1 of He-Zhao-Zou [26], we derive

]

1 . ~
L =———=- /3 IX(x + 2) — B(®5,0)||(—A)2Us 0| dz
_1\ 2 oz JRAO\B(0)
() ot o
<Cp [(—A)2Ts o dz — 0
R3\ B¢ (0)

as & — 0.
For I, by Remark 3.1 we infer to

B(®s5.) = B Us.) + 0s(1)

1 .
— e [ @I T @) do + 0s(1)
_ 2s 3 JR3
(52) 7 s® (5.3)
§3+2s s~
o [ ) 24Tl e+ os(1) = 2+ os(1).
3 JR3
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As a result, we get
3—2s

(ﬁ; 1) S5 I,

<[ @ D) T et [ )~ @I85 e
Be(2) Be(2)

3
\/5—1) 2 3

<2 m—zn(—méﬁa,deHzg(
Be(z) 2

[ @) = 81T do + 0s(1)
Be(2)

3-2s
_1 2s
< 4¢ <\/52 ) S% 4 05(1),

where we have used Lemma 2 of Chabrowski-Yang [14], which states that
x(x) — x(2) < 2|z — 2| + 2§, = € Be(z).

As &€ > 0 can be arbitrarily small, we infer that lims_oy(®s.) = 0, uniformly for |z| < p/2.

Now, we define a set N. C N. by
N. = {u EN. : 3¢ < J.(u) < E3(c* + h(e)), (B(u),y(u)) € I‘},
where T is given as (5.1) satisfying (5.2) and the number ¢* is defined as

. (V51 %3[12“1—\/5)(3—28)]5%
€= 2 6(3 + 2s) h

O

According to Lemma 5.1, we can adjust 61 (¢) and d(¢) such that N, # 0 for € > 0 small enough.

Lemma 5.2. There holds lim._,o sup,, 7 dist(8(u), M,,) = 0 for any g > 0.

Proof. Let u,, € ./\~f€n be so as to

dist(5(un), My) = sup dist(8(u), My,) + on(1),
uE/\~/gn

and €, — 0 as n — oo. It is sufficient to obtain a sequence z, € M, such that
Buy) = zn + 0n(1).

In view of u,, € N, we have

L bl + V@) do = e [ o ae [
R3 R3 R3

For further discussion, we set

= / (2 1(=2) 2unl® + V(@) un|?) da,
R3

Qp 1= 5,:25/ bu, [tn)?dx, by ::/ [,
R3 R3

.
2% dz.

2 dz.
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Multiplying both sides of the second equation of (1.1) (with e replaced by &,) by |u,| and
integrating by parts, using Young’s inequality, we infer, for ¢,, > 0 small enough,

x:625/< NP e >%|un|dx

252 5
5 [N+ 22
2s s 2
—A)?z n d 59 u
/RSsnK ol :c+2T2/RS¢,L

/(eisl(—A)%um+V(m)\un|2) dx+2 /
Rs T RS

From the definition of ¢,,, a,, and b,,, it follows that

<

d)u |2 dz

<

.
up|?da
723

< 2.-14g.

RIS

7_2

1
by < o0 5.3 0n + ?En (5.6)
Choosing 72 = @ and using (5.5) as well as (5.6), we obtain that a, > 3_2*/5671. It follows
from (5.5) and (5.6) that

_ s(3 —2s) s (5.7)

5(15 — 25 — /5(3 — 23))4
- 6(3 + 2s) "
On the other hand, by the estimate (3.13), we have

o= [ U B0+ V@) da
>529/| A)zu,|*dr

(5.8)
—2s
>3 <\/5 _ 1) 535
- 2
Then from (5.7) and (5.8) we obtain
15— 25 — -2
T (un) > 5(15 —2s — /5(3 S))én
6(3 + 2s)
e
> e VBl (5_28_\/5(3_28))5% = edcr.
2 6(3+ 2s)
Consequently, we have
1
edecr < Jo, (un) — §Jé (tn)un < €3(c* + h(eyn)). (5.9)

25—3
Letting wy, := &y 2 un, we have from (5.7) and (5.9) that

e3c* < I, (un) — J’ (U ),

En

~ 5(3—2s) _25/ .
S 3G 18 g Penltn

5 [ A P V@) do
3 Jas
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s(3 —2s) 5
_ |: S 2* —ld + 2 / | Ewn‘Q dx + 35;25/ V(l‘)|’u)n|2 d$:|
R3

3(3 4 2s)
<& (c* —l—h(sn)

from which we conclude that

&:;25/}1§3 V(z)w?dz — 0 asn — oc.

Again by u, € N, , we obtain

|(—A)2w,|? dz + ¢, % V(x)w? dz =
3 R3

Ll dr +
R3

that is, {wp, }nen is a (PS)-sequence for J;. It derives from Lemmas 3.4 and 4.1 with e = 1 that
there exist a number k € N, sequences of points ., ,z¥ € R3 and radii 7},--- , 7% such that:
(1) w® =w, — w® in D>2(R3);
(2) w) = (wi" —w™h) 5 = wl in D**(R%), j=1,2,---,k;
(3) [lwall® = 35— llw?||?;
(4) Ji(wn) = 1 (w0) + 225, Tr.ee(w?),
0

as n — 0o, where w® is a solution of equation (1.1) with ¢ = 1 and w/,1 < j < k, are the
nontrivial solutions of equation (3.2). Assume that w° # 0, then by Lemma 3.4, we have

V5 —1 s(15 — 25 — /5(3 — 25))
2 6(3 +2s)

Ji(w?) > ¢ = < Sz

which is a contradiction to conclusion (4) above, as Ji oo(w’) > ¢* and Ji(w,) — ¢*. Con-
sequently, w® = 0 and we must have k = 1 and w' is a ground state solution of (3.2) with
J1 OO( ) = ¢*. Hence, there exist §; > 0 and z; € R? such that w! = Us, », and there exist
(rh,zl) e R+ XR3 such that
||(wn)r}l,x; - wlll — 0.

Thus, there exist a sequence of points {2, }nen C R? and a sequence of {0, }nen C (0, +00) such
that |gu|l == ||wn — Us,, 2, || = 0 with 2, = 2} +rlz and o, = rld;. We assert that

on =0 and {z,}nen is bounded. (5.10)
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3—2s ~

In fact, setting ¥, . =¢e,2 U, 2., as ¢, — 0 in D*?(R?), we have

/ (@) (D)3, dz / @) ()3T, .. [P de
RS

R3

/ (@) ([(~A) w2 — [(~A)ED,, .. |?) dz

< [ @) % [ [~ 8wl — [(~28)5T, ., 2| da
< P/]R3 (|(—A)%wn| + |(_A)%(~]an,zn|> ’|(_A)%wn| —(~A)ET, . || dz
<o{ [ -850 +1(-2)1T, ., )2 e}

AL '“A);ﬁanm?dx}é

Nl

< Voo Tl + 1o - [ % { [ 8k, - (—A)Sﬁan,zﬁdm}
R3

< Cllw, — Uon,,an = Cllgnl|l — 0

as n — oo. Then, by (5.11), we have

Blun) = = [ x@I-4)

wles

uy,|? dx

— e [ @I P
(\/5—1) s S% R

= —7/ X(@)[(=A)2Us, -, [* dz + 0n(1)
5 3 JR3

—_

- [ @I Pl o)
—2s (V/6=1) % o2
63 2 (T) SQS

=B(¥Yos, 2,) + 0n(1).
By u, € J\~fgn, it can be assumed that
B(¥o, z,) C By2(0).

If 0, — oo, then for each R > 0, by Proposition 2.2 of Di Nezza-Palatucci-Valdinoci |

Lemma 4.1 of He-Zhao-Zou [26], we obtain
1 El oy
i e [ A, P i [ |-8)3D,., P de
n—=00 en” " JBr(0) n—00 /B (0)

< lim /-;/ |VU,, ..|*dz = 0.
Br(0)

n— oo

(5.11)

(5.12)

(5.13)
| and
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Combining this fact, the definition of the map v and (5.13), we have

1 s
W, n,) = o [ @) = B, (- A) s, P ds
£3-2s (\/52—1) =g TR
> [ @A), Pl = 6(0, )
63723 (\/52—1) 2s S% R3
P _A)E 24, P (5.14)
2 5-2s I(=A)* ¥, ., | da + 0n(1) :
= £ 5-2s |(_A)%\I/0mzn 2da — g + 0n(1)
£3-2s (\/52—1) ®oge R
= g + 0,(1).
By [|hn]l == |lun — Yo, 2, || = 0, (5.12) and Hélder’s inequality, we have, as n — oo,
Iv(un) —7(¥o, 2,)|
1 s s
== / (Ix(@) = Blun)[[(=2)2unl® = [x(2) = B(¥o, 2, (D)2 s, 2, |?) da
1 s s
< [ @) = B X I8 ual? (- 8) £, 1, | do
€
+ e s ||X($) — Blun)| = [x(z) — ﬁ(\I’ffn,zn) ! X |(_A)%\I/0mzn *dz
€
1 E- s s 2
Sy (@) = Blun)l % (I(=8)2un| + [(=2)2 Vo, -, ) [(=A) 2 un| = [(~2) 2T, -, || du
€
1 s
+= 1B(un) = B(¥e,,z,)| % |(_A)2\Ijan,,zn|2 dx
Cc JRr3
1 1
2 s s E s E
< \/;p { 1(=2)2un* + |(A)2‘I’an,zn|2|} X { [(=4)2 (un — ‘I’an,zn)|2dfﬂ}
Co 3 R3

2dx — 0,

scmm+%mx/|ewﬂ@@
]RS

3—2s

where ¢} 1= g37%¢ (@) 5% Thus

and so,

But from u,, € /\75”, we have

d1(en) < ¥(un) < d2(en),

(5.15)

(5.16)

where §;(e,) — 0,7 = 1,2 as n — oo, a contradiction to (5.15). Thus, {0, }nen is bounded,
and there exists some o > 0 such that o,, — &, as n — oo. Now, if & > 0, then we must have
that |z,| — oco. Otherwise, U,, ., would converge strongly in D%?(R3) and so it would wy,.
Therefore, J; has a nontrivial minimizer on Ny, which contradicts to Lemma 3.4. Thus, for each
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R > 0, by the fact that lim,, o |2,| = 0o and due to Proposition 2.2 of Di Nezza-Palatucci-
Valdinoci [18] and Lemma 4.1 of He-Zhao-Zou [26], we have that

lim (—A)2U,, ., [*dz = 0.

n—oo Br(0)
Therefore, we can obtain the estimation similar to (5.14), a contradiction to (5.16). By a similar
argument, we can show the boundedness of the sequence {z, }nen. So, (5.10) holds true.

Based on the above analysis, we can assume that z, — 2* and o0, — 0. By extracting

Tn,;
g

subsequences of {0, }nen and {&, }nen, still denoted as {0y, }nen and {e, }nen, such that =+ =

on, (1) as n; — oo, we may change {0y, }nen Dy {€n, }nen and relabel {e,, }nen by {En}niEN-
Define

vp () == en? wp(enx + 2p)-

Then v, — 17170 in D%2(R?) and we have

lim V(ent + 2p)vp(2)* dz = lim ¢, / V(2)wy(x)*dz = 0,
R3

n—oo [pa n— oo

which shows that [y V(z*)ﬁfo(a:) dz = 0. Thus, V(2*) = 0 and z* € M, and so, 2z, € M, for
large n. Returning to (5.12), we get

Blun) = %?’ /Rs X($)|(*A)%Uan,zn|2 dz + on(1)

— o [ X+ 2) — | (-5 010 do 2, + on(1),
(x/il)T g B
2
Since e, + 2z, — 2* € M, we have that 8(u,) = z, + 0,(1) and the sequence {z, }nen is what
we desire. Consequently, (5.4) follows and the proof is complete. g

Proof of Theorem 1.1. For any fixed 1 > 0,let ¢ = ¢, > 0 be small. Therefore, ®: [§1, 5] x M —

N given by ®(8,z) = s, is well defined and by Lemma 5.2, we see that S(N:) C M,. By
(5.3), we infer to
B(®s5.) = z+ 0s(1) uniformly in z € M.
For 0 € [d1, 2], we denote B(Ps,.) = z+(z) for z € M, with [¥(z)| < p/2 uniformly for z € M.
We introduce the map
H(t, (d,2)) = (5,2 4+ (1 — t)¥(z)).
It is easy to check that #H: [0, 1] x [01,d2] x M — [d1, 2] x M), is continuous. Clearly,
H(0,(6,2)) = (6,8(®s,2)), H(L, (4, 2)) = (,2),
which implies the map
H(6,2) = (6,8(Ps,2))): [01,02] x M — [61,062] x M,

is homotopic to the inclusion mapping Id: [§1,d2] x M — [61,02] x M. Thus, applying the
Lusternik-Schnirelmann category theory [51], we have

cat(./\~/'€) > cat[(;h(;,z]xM“([él, d2] x M) = catpy, (M).
By Corollaries 3.5 and 4.2, the functional J. satisfies the (PS).-condition on N.. Hence, the
Lusternik-Schnirelmann category theory of critical points shows that J. has at least catyy, (M)
solutions. 0
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