GENERAL COMPARISON PRINCIPLE FOR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

SIEGFRIED CARL AND PATRICK WINKERT

ABSTRACT. We study quasilinear elliptic variational-hemivariational inequalities involving general Leray-Lions operators. The novelty of this paper is to provide existence and comparison results whereby only a local growth condition on Clarke's generalized gradient is required. Based on these results, in the second part the theory is extended to discontinuous variational-hemivariational inequalities.

1. Introduction

Let $\Omega \subset \mathbb{R}^N$, $N \geq 1$, be a bounded domain with Lipschitz boundary $\partial \Omega$. By $W^{1,p}(\Omega)$ and $W^{1,p}_0(\Omega)$, $1 , we denote the usual Sobolev spaces with their dual spaces <math>(W^{1,p}(\Omega))^*$ and $W^{-1,q}(\Omega)$, respectively, where q is the Hölder conjugate satisfying 1/p + 1/q = 1. We consider the following elliptic variational-hemivariational inequality. Find $u \in K$ such that

$$\langle Au + F(u), v - u \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; v - u) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0, \quad \forall v \in K,$$

$$(1.1)$$

where $j_k^{\text{o}}(x, s; r), k = 1, 2$ denotes the generalized directional derivative of the locally Lipschitz functions $s \mapsto j_k(x, s)$ at s in the direction r given by

$$j_k^{\mathrm{o}}(x,s;r) = \limsup_{y \to s, t \downarrow 0} \frac{j_k(x,y+tr) - j_k(x,y)}{t}, k = 1, 2$$

(cf. [16, Chapter 2]). We denote by K a closed convex subset of $W^{1,p}(\Omega)$, and A is a second-order quasilinear differential operator in divergence form of Leray-Lions type given by

$$Au(x) = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} a_i(x, u(x), \nabla u(x)).$$

The operator F stands for the Nemytskij operator associated with some Carathéodory function $f: \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ defined by

$$F(u)(x) = f(x, u(x), \nabla u(x)).$$

Furthermore, we denote the trace operator by $\gamma:W^{1,p}(\Omega)\to L^p(\partial\Omega)$ which is known to be linear, bounded, and even compact.

²⁰⁰⁰ Mathematics Subject Classification. 35J85, 35R05, 47J20.

Key words and phrases. Variational-hemivariational inequality, Sub- and supersolution, Leray-Lions operator, Existence and comparison principle, Clarke's generalized gradient, Multivalued pseudomonotone operator.

The aim of this paper is to establish the method of sub- and supersolutions for problem (1.1). We prove the existence of solutions between a given pair of sub-supersolution assuming only a local growth condition of Clarke's generalized gradient, which extends results recently obtained by Carl in [6]. To complete our findings, we also give the proof for the existence of extremal solutions of problem (1.1) for a fixed ordered pair of sub- and supersolutions in case A has the form

$$Au(x) = -\sum_{i=1}^{N} \frac{\partial}{\partial x_i} a_i(x, \nabla u(x)).$$

In the second part we consider (1.1) with a discontinuous Nemytskij operator F involved, which extends results in [31] and partly of [8]. Let us consider next some special cases of problem (1.1), where we suppose $A = -\Delta_p$.

(1) If $K = W^{1,p}(\Omega)$ and j_k are smooth, problem (1.1) reduces to

$$\langle -\Delta_p u + F(u), v \rangle + \int_{\Omega} j_1'(\cdot, u) v dx + \int_{\partial \Omega} j_2'(\cdot, \gamma u) \gamma v d\sigma = 0, \quad \forall v \in W^{1,p}(\Omega),$$

which is equivalent to the weak formulation of the nonlinear boundary value problem

$$-\Delta_p u + F(u) + j_1'(u) = 0 \quad \text{in } \Omega,$$
$$\frac{\partial u}{\partial \nu} + j_2'(\gamma u) = 0 \quad \text{on } \partial \Omega,$$

where $\partial u/\partial \nu$ denotes the conormal derivative of u. The method of suband supersolution for this kind of problems is a special case of [5].

(2) For $f \in V_0^*$, $K \subset W_0^{1,p}(\Omega)$ and $j_2 = 0$, (1.1) corresponds to the variational-hemivariational inequality given by

$$\langle -\Delta_p u + f, v - u \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; v - u) dx \ge 0, \quad \forall v \in K,$$

which has been discussed in detail in [4].

(3) If $K \subset W_0^{1,p}(\Omega)$ and $j_k = 0$, then (1.1) is a classical variational inequality of the form

$$u \in K: \langle -\Delta_p u + F(u), v - u \rangle \ge 0, \quad \forall v \in K,$$

whose method of sub- and supersolution has been developed in [9, Chapter 5].

(4) Let $K = W_0^{1,p}(\Omega)$ or $K = W^{1,p}(\Omega)$ and j_k not necessarily smooth. Then problem (1.1) is a hemivariational inequality, which contains for $K = W_0^{1,p}(\Omega)$ as a special case the following Dirichlet problem for the elliptic inclusion:

$$-\Delta_p u + F(u) + \partial j_1(\cdot, u) \ni 0 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial \Omega,$$
 (1.2)

and for $K = W^{1,p}(\Omega)$ the elliptic inclusion

$$-\Delta_{p}u + F(u) + \partial j_{1}(\cdot, u) \ni 0 \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial \nu} + \partial j_{2}(\cdot, u) \ni 0 \quad \text{on } \partial \Omega,$$
(1.3)

where the multivalued functions $s \mapsto \partial j_k(x,s), k=1,2$ stand for Clarke's generalized gradient of the locally Lipschitz function $s \mapsto j_k(x,s), k=1,2$ given by

$$\partial j_k(x,s) = \{ \xi \in \mathbb{R} : j_k^{\text{o}}(x,s;r) \ge \xi r, \forall r \in \mathbb{R} \}.$$
 (1.4)

Problems of the form (1.2) and (1.3) have been studied in [12] and [5], respectively.

Existence results for variational-hemivariational inequalities with or without the method of sub- and supersolutions have been obtained under different structure and regularity conditions on the nonlinear functions by various authors. For example, we refer to [3, 10, 11, 19, 21, 24, 26, 28]. In case that K is the whole space $W_0^{1,p}(\Omega)$ or $W^{1,p}(\Omega)$, respectively, problem (1.1) reduces to a hemivariational inequality which has been treated in [2, 14, 17, 18, 20, 23, 25, 27, 29].

Comparison principles for general elliptic operators A, including the negative p-Laplacian $-\Delta_p$, Clarke's generalized gradient $s \mapsto \partial j(x,s)$, satisfying a one-sided growth condition in the form

$$\xi_1 \le \xi_2 + c_1(s_2 - s_1)^{p-1} \tag{1.5}$$

for all $\xi_i \in \partial j(x, s_i)$, i = 1, 2, for a.a. $x \in \Omega$, and for all s_1, s_2 with $s_1 < s_2$, can be found in [9]. Inspired by results recently obtained in [12] and [13], we prove the existence of (extremal) solutions for the variational-hemivariational inequality (1.1) within a sector of an ordered pair of sub- and supersolutions $\underline{u}, \overline{u}$ without assuming a one-sided growth condition on Clarke's gradient of the form (1.5).

2. Notation of sub- and supersolution

For functions $u, v : \Omega \to \mathbb{R}$ we use the notation $u \wedge v = \min(u, v), u \vee v = \max(u, v), K \wedge K = \{u \wedge v : u, v \in K\}, K \vee K = \{u \vee v : u, v \in K\}, \text{ and } u \wedge K = \{u\} \wedge K, u \vee K = \{u\} \vee K \text{ and introduce the following definitions:}$

Definition 2.1. A function $\underline{u} \in W^{1,p}(\Omega)$ is said to be a subsolution of (1.1) if the following holds:

(1) $F(\underline{u}) \in L^q(\Omega)$;

(2)
$$\langle A\underline{u} + F(\underline{u}), w - \underline{u} \rangle + \int_{\Omega} j_1^{\circ}(\cdot, \underline{u}; w - \underline{u}) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma \underline{u}; \gamma w - \gamma \underline{u}) d\sigma \geq 0. \quad \forall w \in u \wedge K.$$

Definition 2.2. A function $\overline{u} \in W^{1,p}(\Omega)$ is said to be a supersolution of (1.1) if the following holds:

(1) $F(\overline{u}) \in L^q(\Omega)$;

$$(2) \langle A\overline{u} + F(\overline{u}), w - \overline{u} \rangle + \int_{\Omega} j_1^{\circ}(\cdot, \overline{u}; w - \overline{u}) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma \overline{u}; \gamma w - \gamma \overline{u}) d\sigma \geq 0, \quad \forall w \in \overline{u} \vee K.$$

In order to prove our main results, we additionally suppose the following assumptions:

$$u \lor K \subset K, \qquad \overline{u} \land K \subset K.$$
 (2.1)

3. Preliminaries and hypotheses

Let $1 , and assume for the coefficients <math>a_i : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$, i = 1, ..., N the following conditions.

(A1) Each $a_i(x, s, \xi)$ satisfies Carathéodory conditions, that is, is measurable in $x \in \Omega$ for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$ and continuous in (s, ξ) for a.e. $x \in \Omega$. Furthermore, a constant $c_0 > 0$ and a function $k_0 \in L^q(\Omega)$ exist so that

$$|a_i(x, s, \xi)| \le k_0(x) + c_0(|s|^{p-1} + |\xi|^{p-1})$$

for a.a. $x \in \Omega$ and for all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$, where $|\xi|$ denotes the Euclidian norm of the vector ξ .

(A2) The coefficients a_i satisfy a monotonicity condition with respect to ξ in the form

$$\sum_{i=1}^{N} (a_i(x, s, \xi) - a_i(x, s, \xi'))(\xi_i - \xi_i') > 0$$

for a.a. $x \in \Omega$, for all $s \in \mathbb{R}$, and for all $\xi, \xi' \in \mathbb{R}^N$ with $\xi \neq \xi'$.

(A3) A constant $c_1 > 0$ and a function $k_1 \in L^1(\Omega)$ exist such that

$$\sum_{i=1}^{N} a_i(x, s, \xi) \xi_i \ge c_1 |\xi|^p - k_1(x)$$

for a.a. $x \in \Omega$, for all $s \in \mathbb{R}$, and for all $\xi \in \mathbb{R}^N$.

Condition (A1) implies that $A:W^{1,p}(\Omega)\to (W^{1,p}(\Omega))^*$ is bounded continuous and along with (A2) it holds that A is pseudomonotone. Due to (A1) the operator A generates a mapping from $W^{1,p}(\Omega)$ into its dual space defined by

$$\langle Au, \varphi \rangle = \int_{\Omega} \sum_{i=1}^{N} a_i(x, u, \nabla u) \frac{\partial \varphi}{\partial x_i} dx,$$

where $\langle \cdot, \cdot \rangle$ stands for the duality pairing between $W^{1,p}(\Omega)$ and $(W^{1,p}(\Omega))^*$, and assumption (A3) is a coercivity type condition.

Let $[\underline{u}, \overline{u}]$ be an ordered pair of sub- and supersolutions of problem (1.1). We impose the following hypotheses on j_k and the nonlinearity f in problem (1.1).

- (j1) $x \mapsto j_1(x, s)$ and $x \mapsto j_2(x, s)$ are measurable in Ω and $\partial \Omega$, respectively, for all $s \in \mathbb{R}$.
- (j2) $s \mapsto j_1(x,s)$ and $s \mapsto j_2(x,s)$ are locally Lipschitz continuous in \mathbb{R} for a.a. $x \in \Omega$ and for a.a. $x \in \partial \Omega$, respectively.
- (j3) There are functions $L_1 \in L^q_+(\Omega)$ and $L_2 \in L^q_+(\partial\Omega)$ such that for all $s \in [\underline{u}(x), \overline{u}(x)]$ the following local growth conditions hold:

$$\eta \in \partial j_1(x,s) : |\eta| \le L_1(x), \quad \text{for a.a. } x \in \Omega,$$

$$\xi \in \partial j_2(x,s) : |\xi| \le L_2(x), \quad \text{for a.a. } x \in \partial \Omega.$$

 $\begin{array}{ll} \text{(F1)} & \text{(i)} \ \, x \mapsto f(x,s,\xi) \text{ is measurable in } \Omega \text{ for all } (s,\xi) \in \mathbb{R} \times \mathbb{R}^N. \\ & \text{(ii)} \ \, (s,\xi) \mapsto f(x,s,\xi) \text{ is continuous in } \mathbb{R} \times \mathbb{R}^N \text{ for a.a. } x \in \Omega. \end{array}$

(iii) There exist a constant $c_2 > 0$ and a function $k_3 \in L^q_+(\Omega)$ such that

$$|f(x,s,\xi)| \le k_3(x) + c_2|\xi|^{p-1}$$

for a.a. $x \in \Omega$, for all $\xi \in \mathbb{R}^N$, and for all $s \in [\underline{u}(x), \overline{u}(x)]$.

Note that the associated Nemytskij operator F defined by $F(u)(x) = f(x, u(x), \nabla u(x))$ is continuous and bounded from $[\underline{u}, \overline{u}] \subset W^{1,p}(\Omega)$ to $L^q(\Omega)$ (cf. [32]). We recall that the normed space $L^p(\Omega)$ is equipped with the natural partial ordering of functions defined by $u \leq v$ if and only if $v - u \in L^p_+(\Omega)$, where $L^p_+(\Omega)$ is the set of all nonnegative functions of $L^p(\Omega)$.

Based on an approach in [12], the main idea in our considerations is to modify the functions j_k . First we set for k = 1, 2

$$\alpha_k(x) := \min\{\xi : \xi \in \partial j_k(x, \underline{u}(x))\}, \quad \beta_k(x) := \max\{\xi : \xi \in \partial j_k(x, \overline{u}(x))\}. \quad (3.1)$$

By means of (3.1) we introduce the mappings $\tilde{j}_1: \Omega \times \mathbb{R} \to \mathbb{R}$ and $\tilde{j}_2: \partial \Omega \times \mathbb{R} \to \mathbb{R}$ defined by

$$\widetilde{j}_{k}(x,s) = \begin{cases}
j_{k}(x,\underline{u}(x)) + \alpha_{k}(x)(s - \underline{u}(x)), & \text{if } s < \underline{u}(x), \\
j_{k}(x,s), & \text{if } \underline{u}(x) \le s \le \overline{u}(x), \\
j_{k}(x,\overline{u}(x)) + \beta_{k}(x)(s - \overline{u}(x)), & \text{if } s > \overline{u}(x).
\end{cases}$$
(3.2)

The following lemma provides some properties of the functions \tilde{j}_1 and \tilde{j}_2 .

Lemma 3.1. Let the assumptions in (j1)–(j3) be satisfied. Then the modified functions $\widetilde{j}_1: \Omega \times \mathbb{R} \to \mathbb{R}$ and $\widetilde{j}_2: \partial \Omega \times \mathbb{R} \to \mathbb{R}$ have the following qualities.

- $(\widetilde{j}1)$ $x \mapsto \widetilde{j}_1(x,s)$ and $x \mapsto \widetilde{j}_2(x,s)$ are measurable in Ω and $\partial\Omega$, respectively, for all $s \in \mathbb{R}$ and $s \mapsto \widetilde{j}_1(x,s)$ and $s \mapsto \widetilde{j}_2(x,s)$ are locally Lipschitz continuous in \mathbb{R} for a.a. $x \in \Omega$ and for a.a. $x \in \partial\Omega$, respectively.
- $(\widetilde{j}2)$ Let $\partial \widetilde{j}_k(x,s)$ be Clarke's generalized gradient of $s \mapsto \widetilde{j}_k(x,s)$. Then for all $s \in \mathbb{R}$ the following estimates hold true:

$$\eta \in \partial \widetilde{j}_1(x,s) : |\eta| \le L_1(x), \text{ for a.a. } x \in \Omega,$$

$$\xi \in \partial \widetilde{j}_2(x,s) : |\xi| \le L_2(x), \text{ for a.a. } x \in \partial \Omega.$$

 $(\widetilde{j}3)$ Clarke's generalized gradient of $s\mapsto \widetilde{j}_1(x,s)$ and $s\mapsto \widetilde{j}_2(x,s)$ are given by

$$\partial \widetilde{j}_k(x,s) = \begin{cases} \alpha_k(x) & \text{if } s < \underline{u}(x), \\ \partial \widetilde{j}_k(x,\underline{u}(x)) & \text{if } s = \underline{u}(x), \\ \partial j_k(x,s) & \text{if } \underline{u}(x) < s < \overline{u}(x), \\ \partial \widetilde{j}_k(x,\overline{u}(x)) & \text{if } s = \overline{u}(x), \\ \beta_k(x) & \text{if } s > \overline{u}(x), \end{cases}$$

and the inclusions $\partial \widetilde{j}_k(x,\underline{u}(x)) \subset \partial j_k(x,\underline{u}(x))$ and $\partial \widetilde{j}_k(x,\overline{u}(x)) \subset \partial j_k(x,\overline{u}(x))$ are valid for k=1,2.

Proof. With a view to the assumptions (j1)–(j3) and the definition of \widetilde{j}_k in (3.2), one verifies the lemma in few steps.

With the aid of Lemma 3.1, we introduce the integral functionals J_1 and J_2 defined on $L^p(\Omega)$ and $L^p(\partial\Omega)$, respectively, given by

$$J_1(u) = \int_{\Omega} \widetilde{j}_1(x, u(x)) dx, \quad u \in L^p(\Omega)$$
$$J_2(v) = \int_{\partial \Omega} \widetilde{j}_2(x, v(x)) d\sigma, \quad v \in L^p(\partial \Omega).$$

Due to the conditions $(\tilde{j}1)$ – $(\tilde{j}2)$ and Lebourg's mean value theorem (see [16, Chapter 2]), the functionals $J_1:L^p(\Omega)\to\mathbb{R}$ and $J_2:L^p(\partial\Omega)\to\mathbb{R}$ are well-defined and Lipschitz continuous on bounded sets of $L^p(\Omega)$ and $L^p(\partial\Omega)$, respectively. This implies among others that Clarke's generalized gradients $\partial J_1:L^p(\Omega)\to 2^{L^q(\Omega)}$ and $\partial J_2:L^p(\partial\Omega)\to 2^{L^q(\partial\Omega)}$ are well-defined, too. Furthermore, by means of Aubin-Clarke's theorem (see [16]), for $u\in L^p(\Omega)$ and $v\in L^p(\partial\Omega)$ we get

$$\eta \in \partial J_1(u) \Longrightarrow \eta \in L^q(\Omega) \text{ with } \eta(x) \in \partial \widetilde{j}_1(x, u(x)) \text{ for a.a. } x \in \Omega,$$

$$\xi \in \partial J_2(v) \Longrightarrow \xi \in L^q(\partial \Omega) \text{ with } \xi(x) \in \partial \widetilde{j}_2(x, v(x)) \text{ for a.a. } x \in \partial \Omega.$$
(3.3)

An important tool in our considerations is the following surjectivity result for multivalued pseudomonotone mappings perturbed by maximal monotone operators in reflexive Banach spaces.

Theorem 3.2. Let X be a real reflexive Banach space with the dual space X^* , $\Phi: X \to 2^{X^*}$ a maximal monotone operator, and $u_0 \in \text{dom}(\Phi)$. Let $A: X \to 2^{X^*}$ be a pseudomonotone operator, and assume that either A_{u_0} is quasibounded or Φ_{u_0} is strongly quasibounded. Assume further that $A: X \to 2^{X^*}$ is u_0 -coercive, that is, there exists a real-valued function $c: \mathbb{R}_+ \to \mathbb{R}$ with $c(r) \to +\infty$ as $r \to +\infty$ such that for all $(u, u^*) \in \text{graph}(A)$ one has $\langle u^*, u - u_0 \rangle \geq c(\|u\|_X)\|u\|_X$. Then $A + \Phi$ is surjective, that is, $\text{range}(A + \Phi) = X^*$.

The proof of the theorem can be found for example in [30, Theorem 2.12]. The notation A_{u_0} and Φ_{u_0} stands for $A_{u_0}(u) := A(u_0 + u)$ and $\Phi_{u_0}(u) := \Phi(u_0 + u)$, respectively. Note that any bounded operator is, in particular, also quasibounded and strongly quasibounded. For more details we refer to [30]. The next proposition provides a sufficient condition to prove the pseudomonotonicity of multivalued operators and plays an important part in our argumentations. The proof is presented, for example, in [30, Chapter 2].

Proposition 3.3. Let X be a reflexive Banach space, and assume that $A: X \to 2^{X^*}$ satisfies the following conditions:

- (i) for each $u \in X$ one has that A(u) is a nonempty, closed and convex subset of X^* ;
- (ii) $A: X \to 2^{X^*}$ is bounded;
- (iii) if $u_n \rightharpoonup u$ in X and $u_n^* \rightharpoonup u^*$ in X^* with $u_n^* \in A(u_n)$ and if $\limsup \langle u_n^*, u_n u \rangle \leq 0$, then $u^* \in A(u)$ and $\langle u_n^*, u_n \rangle \rightarrow \langle u^*, u \rangle$.

Then the operator $A: X \to 2^{X^*}$ is pseudomonotone.

We denote by $i^*: L^q(\Omega) \to (W^{1,p}(\Omega))^*$ and $\gamma^*: L^q(\partial\Omega) \to (W^{1,p}(\Omega))^*$ the adjoint operators of the imbedding $i: W^{1,p}(\Omega) \to L^p(\Omega)$ and the trace operator

 $\gamma: W^{1,p}(\Omega) \to L^p(\partial\Omega)$, respectively, given by

$$\langle i^* \eta, \varphi \rangle = \int_{\Omega} \eta \varphi dx, \quad \forall \varphi \in W^{1,p}(\Omega),$$
$$\langle \gamma^* \xi, \varphi \rangle = \int_{\partial \Omega} \xi \gamma \varphi d\sigma, \quad \forall \varphi \in W^{1,p}(\Omega).$$

Next, we introduce the following multivalued operators:

$$\Phi_1(u) := (i^* \circ \partial J_1 \circ i)(u), \qquad \Phi_2(u) := (\gamma^* \circ \partial J_2 \circ \gamma)(u), \tag{3.4}$$

where i, i^*, γ, γ^* are defined as mentioned above. The operators $\Phi_k, k = 1, 2$, have the following properties (see e.g. [5, Lemma 3.1 and Lemma 3.2]).

Lemma 3.4. The multivalued operators $\Phi_1:W^{1,p}(\Omega)\to 2^{(W^{1,p}(\Omega))^*}$ and $\Phi_2:W^{1,p}(\Omega)\to 2^{(W^{1,p}(\Omega))^*}$ are bounded and pseudomonotone.

Let $b:\Omega\times\mathbb{R}\to\mathbb{R}$ be the cutoff function related to the given ordered pair $\underline{u},\overline{u}$ of sub- and supersolutions defined by

$$b(x,s) = \begin{cases} (s - \overline{u}(x))^{p-1}, & \text{if } s > \overline{u}(x), \\ 0, & \text{if } \underline{u}(x) \le s \le \overline{u}(x), \\ -(\underline{u}(x) - s)^{p-1}, & \text{if } s < \underline{u}(x). \end{cases}$$
(3.5)

Clearly, the mapping b is a Carathéodory function satisfying the growth condition

$$|b(x,s)| \le k_4(x) + c_3|s|^{p-1} \tag{3.6}$$

for a.a. $x \in \Omega$, for all $s \in \mathbb{R}$, where $k_4 \in L^q_+(\Omega)$ and $c_3 > 0$. Furthermore, elementary calculations show the following estimate

$$\int_{\Omega} b(x, u(x))u(x)dx \ge c_4 \|u\|_{L^p(\Omega)}^p - c_5, \quad \forall u \in L^p(\Omega),$$
 (3.7)

where c_4 and c_5 are some positive constants. Due to (3.6) the associated Nemytskij operator $B: L^p(\Omega) \to L^q(\Omega)$ defined by

$$Bu(x) = b(x, u(x)) \tag{3.8}$$

is bounded and continuous. Since the embedding $i:W^{1,p}(\Omega)\to L^p(\Omega)$ is compact, the composed operator $\widehat{B}:=i^*\circ B\circ i:W^{1,p}(\Omega)\to (W^{1,p}(\Omega))^*$ is completely continuous.

For $u \in W^{1,p}(\Omega)$, we define the truncation operator T with respect to the functions \underline{u} and \overline{u} given by

$$Tu(x) = \begin{cases} \overline{u}(x), & \text{if } u(x) > \overline{u}(x), \\ u(x), & \text{if } \underline{u}(x) \le u(x) \le \overline{u}(x), \\ \underline{u}(x), & \text{if } u(x) < \underline{u}(x). \end{cases}$$

The mapping T is continuous and bounded from $W^{1,p}(\Omega)$ into $W^{1,p}(\Omega)$ which follows from the fact that the functions $\min(\cdot,\cdot)$ and $\max(\cdot,\cdot)$ are continuous from $W^{1,p}(\Omega)$ to itself and that T can be represented as $Tu = \max(u,\underline{u}) + \min(u,\overline{u}) - u$ (cf. [22]). Let $F \circ T$ be the composition of the Nemytskij operator F and T given by

$$(F \circ T)(u)(x) = f(x, Tu(x), \nabla Tu(x)).$$

Due to hypothesis (F1)(iii), the mapping $F \circ T : W^{1,p}(\Omega) \to L^q(\Omega)$ is bounded and continuous. We set $\widehat{F} : i^* \circ (F \circ T) : W^{1,p}(\Omega) \to (W^{1,p}(\Omega))^*$, and consider the multivalued operator

$$\widetilde{A} = A_T u + \widehat{F} + \lambda \widehat{B} + \Phi_1 + \Phi_2 : W^{1,p}(\Omega) \to 2^{(W^{1,p}(\Omega))^*},$$
 (3.9)

where λ is a constant specified later, and the operator A_T is given by

$$\langle A_T u, \varphi \rangle = -\sum_{i=1}^N \int_{\Omega} a_i(x, Tu, \nabla u) \frac{\partial \varphi}{\partial x_i} dx.$$

We are going to prove the following properties for the operator \widetilde{A} .

Lemma 3.5. The operator $\widetilde{A}: W^{1,p}(\Omega) \to 2^{(W^{1,p}(\Omega))^*}$ is bounded, pseudomonotone, and coercive for λ sufficiently large.

Proof. The boundedness of \widetilde{A} follows directly from the boundedness of the specific operators A_T , \widehat{F} , \widehat{B} , Φ_1 and Φ_2 . As seen above, the operator \widehat{B} is completely continuous and thus pseudomonotone. The elliptic operator $A_T + \widehat{F}$ is pseudomonotone because of hypotheses (A1), (A2), and (F1), and in view of Lemma 3.4 the operators Φ_1 and Φ_2 are bounded and pseudomonotone as well. Since pseudomonotonicity is invariant under addition, we conclude that $\widetilde{A}:W^{1,p}(\Omega)\to 2^{(W^{1,p}(\Omega))^*}$ is bounded and pseudomonotone. To prove the coercivity of \widetilde{A} , we have to find the existence of a real-valued function $c:\mathbb{R}_+\to\mathbb{R}$ satisfying

$$\lim_{s \to +\infty} c(s) = +\infty, \tag{3.10}$$

such that for all $u \in W^{1,p}(\Omega)$ and $u^* \in \widetilde{A}(u)$ the following holds

$$\langle u^*, u - u_0 \rangle \ge c(\|u\|_{W^{1,p}(\Omega)}) \|u\|_{W^{1,p}(\Omega)},$$
 (3.11)

for some $u_0 \in K$. Let $u^* \in \widetilde{A}(u)$, that is, u^* is of the form

$$u^* = (A_T + \widehat{F} + \lambda \widehat{B})(u) + i^* \eta + \gamma^* \xi,$$

where $\eta \in L^q(\Omega)$ with $\eta(x) \in \partial \widetilde{j}_1(x, u(x))$ for a.a. $x \in \Omega$ and $\xi \in L^q(\partial \Omega)$ with $\xi(x) \in \partial \widetilde{j}_2(x, u(x))$ for a.a. $x \in \partial \Omega$. Applying (A1), (A3), (F1)(iii), (3.7), and (\widetilde{j}_2),

the trace operator $\gamma:W^{1,p}(\Omega)\to L^p(\partial\Omega)$ and Young's inequality yield

$$\langle u^*, u - u_0 \rangle$$

$$= \langle (A_T + \widehat{F} + \lambda \widehat{B})(u) + i^* \eta + \gamma^* \xi, u - u_0 \rangle$$

$$= \int_{\Omega} \sum_{i=1}^{N} a_i(x, Tu, \nabla u) \frac{\partial u - \partial u_0}{\partial x_i} dx$$

$$+ \int_{\Omega} (f(\cdot, Tu, \nabla Tu)(u - u_0) + \lambda b(x, u)(u - u_0)) dx$$

$$+ \int_{\Omega} \eta(u - u_0)) dx + \int_{\partial \Omega} \xi \gamma(u - u_0) d\sigma$$

$$\geq c_1 \|\nabla u\|_{L^p(\Omega)}^p - \|k_1\|_{L^1(\Omega)} - d_1 \|u\|_{L^p(\Omega)}^{p-1} - d_2 \|\nabla u\|_{L^p(\Omega)}^{p-1} - d_3$$

$$- \varepsilon \|\nabla u\|_{L^p(\Omega)}^p - c(\varepsilon) \|u\|_{L^p(\Omega)}^p - d_5 \|u\|_{L^p(\Omega)} - d_6 \|\nabla u\|_{L^p(\Omega)}^{p-1} - d_7$$

$$+ \lambda c_4 \|u\|_{L^p(\Omega)}^p - \lambda c_5 - d_8 - d_9 \|u\|_{L^p(\Omega)}^{p-1} - d_{10} \|u\|_{L^p(\Omega)} - d_{11}$$

$$- d_{12} \|u\|_{L^p(\Omega)} - d_{13}$$

$$= (c_1 - \varepsilon) \|\nabla u\|_{L^p(\Omega)}^p + (\lambda c_4 - c(\varepsilon)) \|u\|_{L^p(\Omega)}^p - d_{14} \|\nabla u\|_{L^p(\Omega)}^{p-1} - d_{15} \|u\|_{L^p(\Omega)}^{p-1}$$

$$- d_{16} \|u\|_{L^p(\Omega)} - d_{17},$$

where d_j are some positive constants. Choosing $\varepsilon < c_1$ and λ such that $\lambda > c(\varepsilon)/c_4$ yields the estimate

$$\langle u^*, u - u_0 \rangle \ge d_{18} \|u\|_{W^{1,p}(\Omega)}^p - d_{19} \|u\|_{W^{1,p}(\Omega)}^{p-1} - d_{20} \|u\|_{W^{1,p}(\Omega)} - d_{21}.$$

Setting $c(s) = d_{18}s^{p-1} - d_{19}s^{p-2} - d_{20} - d_{21}/s$ for s > 0 and c(0) = 0 provides the estimate in (3.11) satisfying (3.10). This proves the coercivity of A and completes the proof of the lemma.

4. Main results

Theorem 4.1. Let hypotheses (A1)–(A3),(j1)–(j3), and (F1) be satisfied, and assume the existence of sub- and supersolutions \underline{u} and \overline{u} , respectively, satisfying $\underline{u} \leq \overline{u}$ and (2.1). Then, there exists a solution of (1.1) in the order interval $[\underline{u}, \overline{u}]$.

Proof. Let $I_K: W^{1,p}(\Omega) \to \mathbb{R} \cup \{+\infty\}$ be the indicator function corresponding to the closed convex set $K \neq \emptyset$ given by

$$I_K(u) = \begin{cases} 0, & \text{if } u \in K, \\ +\infty, & \text{if } u \notin K, \end{cases}$$

which is known to be proper, convex, and lower semicontinuous. The variational-hemivariational inequality (1.1) can be rewritten as follows. Find $u \in K$ such that

$$\langle Au + F(u), v - u \rangle + I_K(v) - I_K(u) + \int_{\Omega} j_1^{\circ}(\cdot, u; v - u) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0, \quad \forall v \in W^{1,p}(\Omega)$$

$$(4.1)$$

By using the operators $A_T, \widehat{F}, \widehat{B}$ and the functions $\widetilde{j}_1, \widetilde{j}_2$ introduced in Section 3, we consider the following auxiliary problem. Find $u \in K$ such that

$$\langle A_T u + \widehat{F}(u) + \lambda \widehat{B}(u), v - u \rangle + I_K(v) - I_K(u) + \int_{\Omega} \widetilde{j}_1^{\circ}(\cdot, u; v - u) dx + \int_{\partial \Omega} \widetilde{j}_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0,$$

$$(4.2)$$

for all $v \in W^{1,p}(\Omega)$. Consider now the multivalued operator

$$\widetilde{A} + \partial I_K : W^{1,p}(\Omega) \to 2^{(W^{1,p}(\Omega))^*}$$

where \widetilde{A} is as in (3.9), and $\partial I_K: W^{1,p}(\Omega) \to 2^{(W^{1,p}(\Omega))^*}$ is the subdifferential of the indicator function I_K which is known to be a maximal monotone operator (cf. [30, Page 20]). Lemma 3.5 provides that \widetilde{A} is bounded, pseudomonotone, and coercive. Applying Theorem 3.2 proves the surjectivity of $\widetilde{A} + \partial I_K$ meaning that range $(\widetilde{A} + \partial I_K) = (W^{1,p}(\Omega))^*$. Since $0 \in (W^{1,p}(\Omega))^*$, there exist a solution $u \in K$ of the inclusion

$$\widetilde{A}(u) + \partial I_K(u) \ni 0.$$
 (4.3)

This implies the existence of $\eta^* \in \Phi_1(u), \xi^* \in \Phi_2(u)$, and $\theta^* \in \partial I_K(u)$ such that

$$A_T u + \hat{F}(u) + \lambda \hat{B}(u) + \eta^* + \xi^* + \theta^* = 0, \quad \text{in } (W^{1,p}(\Omega))^*,$$
 (4.4)

where it holds in view of (3.3) and (3.4) that

$$\eta^* = i^* \eta$$
 and $\xi^* = \gamma^* \xi$

with

$$\eta \in L^q(\Omega), \ \eta(x) \in \partial \widetilde{j}_1(x, u(x))$$
 as well as $\xi \in L^q(\partial \Omega), \ \xi(x) \in \partial \widetilde{j}_2(x, \gamma u(x)).$

Due to the Definition of Clarke's generalized gradient $\partial \widetilde{j}_k(\cdot, u), k = 1, 2$, one gets

$$\langle \eta^*, \varphi \rangle = \int_{\Omega} \eta(x) \varphi(x) dx \le \int_{\Omega} \widetilde{j}_{1}^{\text{o}}(x, u(x); \varphi(x)) dx, \quad \forall \varphi \in W^{1,p}(\Omega),$$

$$\langle \xi^*, \varphi \rangle = \int_{\partial \Omega} \xi(x) \gamma \varphi(x) d\sigma \le \int_{\partial \Omega} \widetilde{j}_{2}^{\text{o}}(x, \gamma u(x); \gamma \varphi(x)) d\sigma, \quad \forall \varphi \in W^{1,p}(\Omega).$$

$$(4.5)$$

Moreover, we have the following estimate:

$$\langle \theta^*, v - u \rangle \le I_K(v) - I_K(u), \quad \forall v \in W^{1,p}(\Omega).$$
 (4.6)

From (4.4) we conclude

$$\langle A_T u + \widehat{F}(u) + \lambda \widehat{B}(u) + \eta^* + \xi^* + \theta^*, \varphi \rangle = 0, \quad \forall \varphi \in W^{1,p}(\Omega).$$

Using the estimates in (4.5) and (4.6) to the equation above where φ is replaced by v-u, yields for all $v \in W^{1,p}(\Omega)$

$$0 = \langle A_T - \Delta_p u + \widehat{F}(u) + \lambda \widehat{B}(u) + \eta^* + \xi^* + \theta^*, v - u \rangle$$

$$\leq \langle A_T u + \widehat{F}(u) + \lambda \widehat{B}(u), v - u \rangle + I_K(v) - I_K(u)$$

$$+ \int_{\Omega} \widetilde{j}_1^{\circ}(\cdot, u; v - u) dx + \int_{\partial \Omega} \widetilde{j}_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma.$$

Hence, we obtain a solution u of the auxiliary problem (4.2) which is equivalent to the problem. Find $u \in K$ such that

$$\langle A_T u + \widehat{F}(u) + \lambda \widehat{B}(u), v - u \rangle + \int_{\Omega} \widetilde{j}_1^{\circ}(\cdot, u; v - u) dx + \int_{\partial \Omega} \widetilde{j}_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0, \quad \forall v \in K.$$

$$(4.7)$$

In the next step we have to show that any solution u of (4.7) belongs to $[u, \overline{u}]$. By Definition 2.2 and by choosing $w = \overline{u} \vee u = \overline{u} + (u - \overline{u})^+ \in \overline{u} \vee K$, we obtain

$$\langle A\overline{u} + F(\overline{u}), (u - \overline{u})^+ \rangle + \int_{\Omega} j_1^{\circ}(\cdot, \overline{u}; (u - \overline{u})^+) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma \overline{u}; \gamma (u - \overline{u})^+) d\sigma \ge 0,$$

and selecting $v = \overline{u} \wedge u = u - (u - \overline{u})^+ \in K$ in (4.7) provides

$$\langle A_T u + \widehat{F}(u) + \lambda \widehat{B}(u), -(u - \overline{u})^+ \rangle + \int_{\Omega} \widetilde{j}_1^{\circ}(\cdot, u; -(u - \overline{u})^+) dx$$
$$+ \int_{\partial \Omega} \widetilde{j}_2^{\circ}(\cdot, \gamma u; -\gamma (u - \overline{u})^+) d\sigma \ge 0.$$

Adding these inequalities yields

$$\sum_{i=1}^{N} \int_{\Omega} (a_{i}(x, \overline{u}, \nabla \overline{u}) - a_{i}(x, Tu, \nabla u)) \frac{\partial (u - \overline{u})^{+}}{\partial x_{i}} dx$$

$$+ \int_{\Omega} (F(\overline{u}) - (F \circ T)(u))(u - \overline{u})^{+} dx$$

$$+ \int_{\Omega} (j_{1}^{o}(\cdot, \overline{u}; 1) + \widetilde{j}_{1}^{o}(\cdot, u; -1))(u - \overline{u})^{+} dx$$

$$+ \int_{\partial\Omega} (j_{2}^{o}(\cdot, \gamma \overline{u}; 1) + \widetilde{j}_{2}^{o}(\cdot, \gamma u; -1))\gamma(u - \overline{u})^{+} d\sigma$$

$$\geq \lambda \int_{\Omega} B(u)(u - \overline{u})^{+} dx.$$

$$(4.8)$$

Let us analyze the specific integrals in (4.8). By using (A2) and the definition of the truncation operator, we obtain

$$\int_{\Omega} (a_i(x, \overline{u}, \nabla \overline{u}) - a_i(x, Tu, \nabla u)) \frac{\partial (u - \overline{u})^+}{\partial x_i} dx \le 0,$$

$$\int_{\Omega} (F(\overline{u}) - (F \circ T)(u))(u - \overline{u})^+ dx = 0.$$
(4.9)

Furthermore, we consider the third integral of (4.8) in case $u > \overline{u}$, otherwise it would be zero. Applying (1.4) and (3.2) proves

$$\widetilde{j}_{1}^{o}(x, u(x); -1) = \limsup_{s \to u(x), t \downarrow 0} \frac{\widetilde{j}_{1}(x, s - t) - \widetilde{j}_{1}(x, s)}{t}$$

$$= \limsup_{s \to u(x), t \downarrow 0} \frac{j_{1}(x, \overline{u}(x)) + \beta_{1}(x)(s - t - \overline{u}(x)) - j_{1}(x, \overline{u}(x)) - \beta_{1}(x)(s - \overline{u}(x))}{t}$$

$$= \limsup_{s \to u(x), t \downarrow 0} \frac{-\beta_{1}(x)t}{t}$$

$$= -\beta_{1}(x). \tag{4.10}$$

Proposition 2.1.2 in [16] along with (3.1) shows

$$j_1^{\mathrm{o}}(x, \overline{u}(x); 1) = \max\{\xi : \xi \in \partial j_1(x, \overline{u}(x))\} = \beta_1(x). \tag{4.11}$$

In view of (4.10) and (4.11) we obtain

$$\int_{\Omega} (j_1^{\circ}(\cdot, \overline{u}; 1) + \widetilde{j}_1^{\circ}(\cdot, u; -1))(u - \overline{u})^+ dx = \int_{\Omega} (\beta_1(x) - \beta_1(x))(u - \overline{u})^+ dx = 0,$$
(4.12)

and analog to this calculation

$$\int_{\partial\Omega} (j_2^{\circ}(\cdot, \gamma \overline{u}; 1) + \widetilde{j}_2^{\circ}(\cdot, \gamma u; -1)) \gamma (u - \overline{u})^+ d\sigma = 0.$$
 (4.13)

Due to (4.9), (4.12) and (4.13), we immediately realize that the left-hand side in (4.8) is nonpositive. Thus, we have

$$0 \ge \lambda \int_{\Omega} B(u)(u - \overline{u})^{+} dx$$

$$= \lambda \int_{\Omega} b(\cdot, u)(u - \overline{u})^{+} dx$$

$$= \lambda \int_{\{x: u(x) > \overline{u}(x)\}} (u - \overline{u})^{p} dx$$

$$= \lambda \int_{\Omega} ((u - \overline{u})^{+})^{p} dx$$

$$\ge 0,$$

which implies $(u - \overline{u})^+ = 0$ and hence, $u \leq \overline{u}$. The proof for $\underline{u} \leq u$ is done in a similar way. So far we have shown that any solution of the inclusion (4.3) (which is a solution of (4.2) as well) belongs to the interval $[\underline{u}, \overline{u}]$. The latter implies $A_T u = A u$, B(u) = 0 and $(F \circ T)(u) = F(u)$, and thus from (4.3) it follows

$$\langle Au + F(u) + i^* \eta + \gamma^* \xi, v - u \rangle > 0, \quad \forall v \in K,$$

where $\eta(x) \in \partial \widetilde{j}_1(x, u(x)) \subset \partial j_1(x, u(x))$ and $\xi(x) \in \partial \widetilde{j}_2(x, \gamma u(x)) \subset \partial j_2(x, \gamma u(x))$, which proves that $u \in [\underline{u}, \overline{u}]$ is also a solution of our original problem (1.1). This completes the proof of the theorem.

Let S denote the set of all solutions of (1.1) within the order interval $[u, \overline{u}]$. In addition, we will assume that K has lattice structure, that is, K fulfills

$$K \vee K \subset K, \qquad K \wedge K \subset K.$$
 (4.14)

We are going to show that \mathcal{S} possesses the smallest and greatest element with respect to the given partial ordering.

Theorem 4.2. Let the hypothesis of Theorem 4.1 be satisfied. Then the solution set S is compact.

Proof. First, we are going to show that S is bounded in $W^{1,p}(\Omega)$. Let $u \in S$ be a solution of (4.1), and notice that S is $L^p(\Omega)$ -bounded because of $u < u < \overline{u}$. This implies $\gamma \underline{u} \leq \gamma \underline{u} \leq \gamma \overline{u}$, and thus, u is also bounded in $L^p(\partial \Omega)$. Choosing a fixed $v = u_0 \in K$ in (4.1) delivers

$$\langle Au + F(u), u_0 - u \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; u_0 - u) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma u_0 - \gamma u) d\sigma \ge 0.$$

Using (A1), (j3), (F1)(iii), Proposition 2.1.2 in [16], and Young's inequality yields

$$\begin{split} \langle Au,u\rangle & \leq \int_{\Omega} \sum_{i=1}^{N} |a_{i}(x,u,\nabla u)| \left| \frac{\partial u_{0}}{\partial x_{i}} \right| dx \\ & + \int_{\Omega} |f(x,u,\nabla u)| |u_{0} - u| dx \\ & + \int_{\Omega} \max \{ \eta(u_{0} - u) : \eta \in \partial j_{1}(x,u) \} dx \\ & + \int_{\partial \Omega} \max \{ \xi(u_{0} - u) : \xi \in \partial j_{2}(x,u) \} d\sigma \\ & \leq \int_{\Omega} \sum_{i=1}^{N} (k_{0} + c_{0}|u|^{p-1} + c_{0}|\nabla u|^{p-1}) |\nabla u_{0}| dx \\ & + \int_{\Omega} (k_{3} + c_{2}|\nabla u|^{p-1}) |u_{0} - u| dx \\ & + \int_{\Omega} (k_{3} + c_{2}|\nabla u|^{p-1}) |u_{0} - u| dx \\ & + \int_{\Omega} L_{1}|u_{0} - u| dx + \int_{\partial \Omega} L_{2}|\gamma u_{0} - \gamma u| d\sigma \\ & \leq e_{1} + e_{2} \|u\|_{L^{p}(\Omega)}^{p-1} + e_{3} \|\nabla u\|_{L^{p}(\Omega)}^{p-1} + e_{4} + e_{5} \|u\|_{L^{p}(\Omega)} + e_{6} \|\nabla u\|_{L^{p}(\Omega)}^{p-1} \\ & + \varepsilon \|\nabla u\|_{L^{p}(\Omega)}^{p} + c(\varepsilon) \|u\|_{L^{p}(\Omega)}^{p} + e_{7} + e_{8} \|u\|_{L^{p}(\Omega)} + e_{9} + e_{10} \|u\|_{L^{p}(\partial \Omega)} \\ & \leq \varepsilon \|\nabla u\|_{L^{p}(\Omega)}^{p} + e_{11} \|\nabla u\|_{L^{p}(\Omega)}^{p-1} + e_{12} \|\nabla u\|_{L^{p}(\Omega)} + e_{13}, \end{split}$$

where the left-hand side fulfills the estimate

$$\langle Au, u \rangle \ge c_1 \|\nabla u\|_{L^p(\Omega)}^p - k_1.$$

Thus, one has

$$(c_1 - \varepsilon) \|\nabla u\|_{L^p(\Omega)}^p \le e_{11} \|\nabla u\|_{L^p(\Omega)}^{p-1} + e_{13},$$

where the choice $\varepsilon < c_1$ proves that $\|\nabla u\|_{L^p(\Omega)}$ is bounded. Hence, we obtain the boundedness of u in $W^{1,p}(\Omega)$. Let $(u_n) \subset \mathcal{S}$. Since $W^{1,p}(\Omega), 1 , is$ reflexive, there exists a weakly convergent subsequence, not relabelled, which yields along with the compact imbedding $i:W^{1,p}(\Omega)\to L^p(\Omega)$ and the compactness of the trace operator $\gamma:W^{1,p}(\Omega)\to L^p(\partial\Omega)$

$$u_n \to u \text{ in } W^{1,p}(\Omega),$$

 $u_n \to u \text{ in } L^p(\Omega) \text{ and a.e. pointwise in } \Omega,$ (4.15)
 $\gamma u_n \to \gamma u \text{ in } L^p(\partial \Omega) \text{ and a.e. pointwise in } \partial \Omega.$

As u_n solves (4.1), in particular, for $v = u \in K$, we obtain

$$\langle Au_n, u_n - u \rangle$$

$$\leq \langle F(u_n), u - u_n \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u_n; u - u_n) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u_n; \gamma u - \gamma u_n) d\sigma.$$
(4.16)

Since $(s,r) \mapsto j_k^{\rm o}(x,s;r), k=1,2$, is upper semicontinuous and due to Fatou's Lemma, we get from (4.16)

$$\limsup_{n \to \infty} \langle Au_n, u_n - u \rangle \leq \limsup_{n \to \infty} \langle F(u_n), u - u_n \rangle + \int_{\Omega} \limsup_{n \to \infty} j_1^{\circ}(\cdot, u_n; u - u_n) dx$$

$$+ \int_{\partial \Omega} \limsup_{n \to \infty} j_2^{\circ}(\cdot, \gamma u_n; \gamma u - \gamma u_n) d\sigma \leq 0.$$

$$\leq j_2^{\circ}(\cdot, \gamma u, \gamma 0) = 0$$

$$(4.17)$$

The elliptic operator A satisfies the (S_+) -property, which due to (4.17) and (4.15) implies

$$u_n \to u$$
 in $W^{1,p}(\Omega)$.

Replacing u by u_n in (1.1) yields the following inequality:

$$\langle Au_n + F(u_n), v - u_n \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u_n; v - u_n) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u_n; \gamma v - \gamma u_n) d\sigma \ge 0, \quad \forall v \in K.$$

$$(4.18)$$

Passing to the limes superior in (4.18) and using Fatou's Lemma, the strong convergence of (u_n) in $W^{1,p}(\Omega)$, and the upper semicontinuity of $(s,r) \to j_k^o(x,s;r), k = 1,2$, we have

$$\langle Au+F(u),v-u\rangle+\int_{\Omega}j_{1}^{\mathrm{o}}(\cdot,u;v-u)dx+\int_{\partial\Omega}j_{2}^{\mathrm{o}}(\cdot,\gamma u;\gamma v-\gamma u)d\sigma\geq0,\quad\forall v\in K.$$

Hence, $u \in \mathcal{S}$. This shows the compactness of the solution set \mathcal{S} .

In order to prove the existence of extremal elements of the solution set S, we drop the u-dependence of the operator A. Then, our assumptions read as follows.

(A1') Each $a_i(x,\xi)$ satisfies Carathéodory conditions, that is, is measurable in $x \in \Omega$ for all $\xi \in \mathbb{R}^N$ and continuous in ξ for a.a. $x \in \Omega$. Furthermore, a constant $c_0 > 0$ and a function $k_0 \in L^q(\Omega)$ exist so that

$$|a_i(x,\xi)| \le k_0(x) + |\xi|^{p-1}$$

for a.a. $x \in \Omega$ and for all $\xi \in \mathbb{R}^N$, where $|\xi|$ denotes the Euclidian norm of the vector ξ .

(A2') The coefficients a_i satisfy a monotonicity condition with respect to ξ in the

$$\sum_{i=1}^{N} (a_i(x,\xi) - a_i(x,\xi'))(\xi_i - \xi_i') > 0$$

for a.a. $x \in \Omega$, and for all $\xi, \xi' \in \mathbb{R}^N$ with $\xi \neq \xi'$.

(A3') A constant $c_1 > 0$ and a function $k_1 \in L^1(\Omega)$ exist such that

$$\sum_{i=1}^{N} a_i(x,\xi)\xi_i \ge c_1 |\xi|^p - k_1(x)$$

for a.a. $x \in \Omega$, and for all $\xi \in \mathbb{R}^N$.

Then the operator $A: W^{1,p}(\Omega) \to (W^{1,p}(\Omega))^*$ acts in the following way:

$$\langle Au, \varphi \rangle = \int_{\Omega} \sum_{i=1}^{N} a_i(x, \nabla u) \frac{\partial \varphi}{\partial x_i} dx.$$

Let us recall the definition of a directed set.

Definition 4.3. Let (\mathcal{P}, \leq) be a partially ordered set. A subset \mathcal{C} of \mathcal{P} is said to be upward directed if for each pair $x, y \in \mathcal{C}$ there is a $z \in \mathcal{C}$ such that $x \leq z$ and $y \leq z$. Similarly, C is downward directed if for each pair $x, y \in C$ there is a $w \in C$ such that $w \leq x$ and $w \leq y$. If C is both upward and downward directed, it is called directed.

Theorem 4.4. Let hypotheses (A1')–(A3') and (j1)–(j3) be fulfilled, and assume that (F1) and (4.14) are valid. Then the solution set S of problem (1.1) is a directed set.

Proof. By Theorem 4.1, we have $S \neq \emptyset$. Let $u_1, u_2 \in S$ be given solutions of (1.1), and let $u_0 = \max\{u_1, u_2\}$. We have to show that there is a $u \in \mathcal{S}$ such that $u_0 \leq u$. Our proof is mainly based on an approach developed recently in [13] which relies on a properly constructed auxiliary problem. Let the operator \hat{B} be given basically as in (3.5)-(3.8) with the following slight change:

$$b(x,s) = \begin{cases} (s - \overline{u}(x))^{p-1}, & \text{if } s > \overline{u}(x), \\ 0, & \text{if } \underline{u}(x) \le s \le \overline{u}(x), \\ -(u_0(x) - s)^{p-1}, & \text{if } s < u_0(x). \end{cases}$$

We introduce truncation operators T_j related to u_j and modify the truncation operator T as follows. For j = 1, 2, we define

$$T_{j}u(x) = \begin{cases} \overline{u}(x), & \text{if } u(x) > \overline{u}(x), \\ u(x), & \text{if } u_{j}(x) \le u(x) \le \overline{u}(x), \\ u_{j}(x), & \text{if } u(x) < u_{j}(x). \end{cases}$$

$$Tu(x) = \begin{cases} \overline{u}(x), & \text{if } u(x) > \overline{u}(x), \\ u(x), & \text{if } u_{0}(x) \le u(x) \le \overline{u}(x), \\ u_{0}(x), & \text{if } u(x) < u_{0}(x), \end{cases}$$

and we set

$$Gu(x) = f(x, Tu(x), \nabla Tu(x)) - \sum_{j=1}^{2} |f(x, Tu(x), \nabla Tu(x)) - f(x, T_{j}u(x), \nabla T_{j}u(x))|$$

as well as

$$\widehat{F}: i^* \circ G: W^{1,p}(\Omega) \to (W^{1,p}(\Omega))^*.$$

Moreover, we define

$$\alpha_{k,j}(x) := \min\{\xi : \xi \in \partial j_k(x, u_j(x))\}, \qquad \beta_k(x) := \max\{\xi : \xi \in \partial j_k(x, \overline{u}(x))\}$$

$$\alpha_{k,0}(x) := \begin{cases} \alpha_{k,1}(x), & \text{if } x \in \{u_1 \ge u_2\}, \\ \alpha_{k,2}(x), & \text{if } x \in \{u_2 > u_1\} \end{cases}$$

for k, j = 1, 2, and introduce the functions $\tilde{j}_1 : \Omega \times \mathbb{R} \to \mathbb{R}$ and $\tilde{j}_2 : \partial \Omega \times \mathbb{R} \to \mathbb{R}$ defined by

$$\widetilde{j}_{k}(x,s) = \begin{cases}
j_{k}(x,u_{0}(x)) + \alpha_{k,0}(x)(s - u_{0}(x)), & \text{if } s < u_{0}(x), \\
j_{k}(x,s), & \text{if } u_{0}(x) \le s \le \overline{u}(x), \\
j_{k}(x,\overline{u}(x)) + \beta_{k}(x)(s - \overline{u}(x)), & \text{if } s > \overline{u}(x).
\end{cases}$$
(4.19)

Furthermore, we define the functions $h_{1,j}: \Omega \times \mathbb{R} \to \mathbb{R}$ and $h_{2,j}: \partial \Omega \times \mathbb{R} \to \mathbb{R}$ for j = 0, 1, 2 as follows:

$$h_{k,0}(x,s) = \begin{cases} \alpha_{k,0}(x), & \text{if } s \leq u_0(x), \\ \alpha_{k,0}(x) + \frac{\beta_k(x) - \alpha_{k,0}(x)}{\overline{u}(x) - u_0(x)} (s - u_0(x)), & \text{if } u_0(x) < s < \overline{u}(x), \\ \beta_k(x), & \text{if } s \geq \overline{u}(x), \end{cases}$$

and for j = 1, 2

$$h_{k,j}(x,s) = \begin{cases} \alpha_{k,j}(x), & \text{if } s \leq u_j(x), \\ \alpha_{k,j}(x) + \frac{\alpha_{k,0}(x) - \alpha_{k,j}(x)}{u_0(x) - u_k(x)} (s - u_j(x)), & \text{if } u_j(x) < s < u_0(x), \\ h_{k,0}(x,s), & \text{if } s \geq u_0(x), \end{cases}$$

where k=1,2. (Note that for k=2 we understand the functions above being defined on $\partial\Omega$.) Apparently, the mappings $(x,s)\mapsto h_{k,j}(x,s)$ are Carathéodory functions which are piecewise linear with respect to s. Let us introduce the Nemytskij operators $H_1:L^p(\Omega)\to L^q(\Omega)$ and $H_2:L^p(\partial\Omega)\to L^q(\partial\Omega)$ defined by

$$H_1 u(x) = \sum_{j=1}^{2} |h_{1,j}(x, u(x)) - h_{1,0}(x, u(x))|,$$

$$H_2 u(x) = \sum_{j=1}^{2} |h_{2,j}(x, \gamma(u(x))) - h_{2,0}(x, \gamma(u(x)))|.$$

Due to the compact imbedding $W^{1,p}(\Omega) \to L^p(\Omega)$, and the compactness of the trace operator $\gamma: W^{1,p}(\Omega) \to L^p(\partial\Omega)$, the operators $\widetilde{H}_1 = i^* \circ H_1 \circ i: W^{1,p}(\Omega) \to (W^{1,p}(\Omega))^*$ and $\widetilde{H}_2 = \gamma^* \circ H_2 \circ \gamma: W^{1,p}(\Omega) \to (W^{1,p}(\Omega))^*$ are bounded and

completely continuous and thus pseudomonotone. Now, we consider the following auxiliary variational-hemivariational inequality. Find $u \in K$ such that

$$\langle Au + \widehat{F}(u) + \lambda \widehat{B}(u), v - u \rangle + \int_{\Omega} \widetilde{j}_{1}^{o}(\cdot, u; v - u) dx - \langle \widetilde{H}_{1}u, v - u \rangle + \int_{\partial\Omega} \widetilde{j}_{2}^{o}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma - \langle \widetilde{H}_{2}\gamma u, \gamma v - \gamma u \rangle \ge 0,$$

$$(4.20)$$

for all $v \in K$. The construction of the auxiliary problem (4.20) including the functions H_k and G is inspired by a very recent approach introduced by Carl and Motreanu in [13]. The first part of the proof of Theorem 4.1 delivers the existence of a solution u of (4.20), since all calculations in Section 3 are still valid. In order to show that the solution set S of (1.1) is upward directed, we have to verify that a solution u of (4.20) satisfies $u_l \leq u \leq \overline{u}, l = 1, 2$. By assumption $u_l \in \mathcal{S}$, that is, u_l solves

$$u_{l} \in K: \quad \langle Au_{l} + F(u_{l}), v - u_{l} \rangle + \int_{\Omega} j_{1}^{\circ}(\cdot, u_{l}; v - u_{l}) dx$$
$$+ \int_{\partial \Omega} j_{2}^{\circ}(\cdot, \gamma u_{l}; \gamma v - \gamma u_{l}) d\sigma \ge 0,$$

for all $v \in K$. Selecting $v = u \wedge u_l = u_l - (u_l - u)^+ \in K$ in the inequality above vields

$$\langle Au_{l} + F(u_{l}), -(u_{l} - u)^{+} \rangle + \int_{\Omega} j_{1}^{\circ}(\cdot, u_{l}; -(u_{l} - u)^{+}) dx$$

$$+ \int_{\partial\Omega} j_{2}^{\circ}(\cdot, \gamma u_{l}; -\gamma (u_{l} - u)^{+}) d\sigma \geq 0.$$

$$(4.21)$$

Taking the special test function $v = u \vee u_l = u + (u_l - u)^+ \in K$ in (4.20), we get

$$\langle Au + \widehat{F}(u) + \lambda \widehat{B}(u), (u_l - u)^+ \rangle + \int_{\Omega} \widetilde{j}_1^{\circ}(\cdot, u; (u_l - u)^+) dx - \langle \widetilde{H}_1, (u_l - u)^+ \rangle + \int_{\partial \Omega} \widetilde{j}_2^{\circ}(\cdot, \gamma u; \gamma (u_l - u)^+) d\sigma - \langle \widetilde{H}_2 \gamma u, \gamma (u_l - u)^+ \rangle \ge 0.$$

$$(4.22)$$

Adding (4.21) and (4.22) yields

$$\int_{\Omega} \sum_{i=1}^{N} (a_{i}(x, \nabla u) - a_{i}(x, \nabla u_{l})) \frac{\partial (u_{l} - u)^{+}}{\partial x_{i}} dx
+ \int_{\Omega} \left(f(x, Tu), \nabla Tu) - f(x, u_{l}, \nabla u_{l}) \right)
- \sum_{j=1}^{2} |f(x, Tu, \nabla Tu) - f(x, T_{j}u, \nabla T_{j}u)| (u_{l} - u)^{+} dx
+ \int_{\Omega} \left(\tilde{j}_{1}^{o}(\cdot, u; 1) + j_{1}^{o}(\cdot, u_{l}; -1) - \sum_{j=1}^{2} |h_{1,j}(x, u) - h_{1,0}(x, u)| \right) (u_{l} - u)^{+} dx$$

$$+ \int_{\partial\Omega} \left(\tilde{j}_{2}^{o}(\cdot, \gamma u; 1) + j_{2}^{o}(\cdot, \gamma u_{l}; -1) - \sum_{j=1}^{2} |h_{2,j}(x, \gamma u) - h_{2,0}(x, \gamma u)| \right) \gamma(u_{l} - u)^{+} dx$$

$$\geq -\lambda \int_{\Omega} B(u)(u_{l} - u)^{+} dx.$$

The condition (A2') implies directly

$$\int_{\Omega} \sum_{i=1}^{N} (a_i(x, \nabla u) - a_i(x, \nabla u_l)) \frac{\partial (u_l - u)^+}{\partial x_i} dx \le 0, \tag{4.24}$$

and the second integral can be estimated to obtain

$$\int_{\Omega} \left(f(x, Tu, \nabla Tu) - f(x, u_{l}, \nabla u_{l}) \right) \\
- \sum_{j=1}^{2} |f(x, Tu, \nabla Tu) - f(x, T_{j}u, \nabla T_{j}u)| \right) (u_{l} - u)^{+} dx \\
\leq \int_{\Omega} \left(f(x, Tu, \nabla Tu) - f(x, u_{l}, \nabla u_{l}) \right) \\
- |f(x, Tu, \nabla Tu) - f(x, T_{l}u, \nabla T_{l}u)| \right) (u_{l} - u)^{+} dx \\
= \int_{\{x \in \Omega: u_{l}(x) > u(x)\}} \left(f(x, Tu, \nabla Tu) - f(x, u_{l}, \nabla u_{l}) \right) \\
- |f(x, Tu, \nabla Tu) - f(x, u_{l}, \nabla u_{l})| \right) (u_{l} - u) dx \\
\leq 0. \tag{4.25}$$

In order to investigate the third integral, we make use of some auxiliary calculation. In view of (4.19) we have for $u_l(x) > u(x)$

$$\widetilde{j}_{1}^{o}(x, u(x); 1) = \limsup_{s \to u(x), t \downarrow 0} \frac{\widetilde{j}_{1}(x, s + t) - \widetilde{j}_{1}(x, s)}{t}
= \lim_{s \to u(x), t \downarrow 0} \left[\frac{j_{1}(x, u_{0}(x)) + \alpha_{1,0}(x)(s + t - u_{0}(x))}{t} + \frac{-j_{1}(x, u_{0}(x)) - \alpha_{1,0}(x)(s - u_{0}(x))}{t} \right]
= \lim_{s \to u(x), t \downarrow 0} \frac{\alpha_{1,0}(x)t}{t}
= \alpha_{1,0}(x).$$
(4.26)

Applying Proposition 2.1.2 in [16] and (3.1) results in

$$j_{1}^{o}(x, u_{l}(x); -1) = \max\{-\xi : \xi \in \partial j_{1}(x, u_{l}(x))\}$$

$$= -\min\{\xi : \xi \in \partial j_{1}(x, u_{l}(x))\}$$

$$= -\alpha_{1,l}(x).$$
(4.27)

Furthermore, we have in case $u_l(x) > u(x)$

$$h_{1,l}(x, u(x)) = \alpha_{1,l}(x),$$

$$h_{1,0}(x, u(x)) = \alpha_{1,0}(x).$$
(4.28)

Thus, we get

$$\int_{\Omega} \left(\widetilde{j}_{1}^{o}(\cdot, u; 1) + j_{1}^{o}(\cdot, u_{l}; -1) - \sum_{j=1}^{2} |h_{1,j}(x, u) - h_{1,0}(x, u)| \right) (u_{l} - u)^{+} dx
\leq \int_{\Omega} \left(\widetilde{j}_{1}^{o}(\cdot, u; 1) + j_{1}^{o}(\cdot, u_{l}; -1) - |h_{1,l}(x, u) - h_{1,0}(x, u)| \right) (u_{l} - u)^{+} dx
= \int_{\{x \in \Omega: u_{l}(x) > u(x)\}} (\alpha_{1,0}(x) - \alpha_{1,l}(x) - |\alpha_{1,l}(x) - \alpha_{1,0}(x)|) (u_{l} - u)^{+} dx
\leq 0.$$
(4.29)

The same result can be proven for the boundary integral meaning

$$\int_{\partial\Omega} \left(\widetilde{j}_{2}^{o}(\cdot, \gamma u; 1) + j_{2}^{o}(\cdot, \gamma u_{l}; -1) - \sum_{j=1}^{2} |h_{2,j}(x, \gamma u) - h_{2,0}(x, \gamma u)| \right) \gamma (u_{l} - u)^{+} d\sigma \leq 0.$$
(4.30)

Applying (4.24)–(4.30) to (4.23) yields

$$0 \ge -\lambda \int_{\Omega} B(u)(u_l - u)^+ dx$$

$$= -\lambda \int_{\{x \in \Omega : u_l(x) > u(x)\}} -(u_0 - u)^{p-1} (u_l - u) dx$$

$$\ge \lambda \int_{\Omega} ((u_l - u)^+)^p dx$$

$$> 0,$$

and hence, $(u_l - u)^+ = 0$ meaning that $u_l \le u$ for l = 1, 2. This proves $u_0 = \max\{u_1, u_2\} \le u$. The proof for $u \le \overline{u}$ can be shown in a similar way. More precisely, we obtain a solution $u \in K$ of (4.20) satisfying $\underline{u} \le u_0 \le u \le \overline{u}$ which implies $\widehat{F}(u) = f(\cdot, u, \nabla u), \widehat{B}(u) = 0$ and $H_1(u) = H_2(\gamma u) = 0$. The same arguments as at the end of the proof of Theorem 4.1 apply, which shows that u is in fact a solution of problem (1.1) belonging to the interval $[u_0, \overline{u}]$. Thus, the solution set S is upward directed. Analogously, one proves that S is downward directed.

Theorem 4.2 and Theorem 4.4 allow us to formulate the next theorem about the existence of extremal solutions.

Theorem 4.5. Let the hypotheses of Theorem 4.4 be satisfied. Then the solution set S possesses extremal elements.

Proof. Since $S \subset W^{1,p}(\Omega)$ and $W^{1,p}(\Omega)$ is separable, S is also separable, that is, there exists a countable, dense subset $Z = \{z_n : n \in \mathbb{N}\}$ of S. We construct an increasing sequence $(u_n) \subset S$ as follows. Let $u_1 = z_1$ and select $u_{n+1} \in S$ such that

$$\max(z_n, u_n) \le u_{n+1} \le \overline{u}.$$

By Theorem 4.4, the element u_{n+1} exists because S is upward directed. Moreover, we can choose by Theorem 4.2 a convergent subsequence (denoted again by u_n) with $u_n \to u$ in $W^{1,p}(\Omega)$ and $u_n(x) \to u(x)$ a.e. in Ω . Since (u_n) is increasing, the entire sequence converges in $W^{1,p}(\Omega)$ and further, $u = \sup u_n$. One sees at once that $Z \subset [u, u]$ which follows from

$$\max(z_1, \dots, z_n) \le u_{n+1} \le u, \ \forall n,$$

and the fact that $[\underline{u}, u]$ is closed in $W^{1,p}(\Omega)$ implies

$$\mathcal{S} \subset \overline{Z} \subset \overline{[\underline{u}, u]} = [\underline{u}, u].$$

Therefore, as $u \in \mathcal{S}$, we conclude that u is the greatest element in \mathcal{S} . The existence of the smallest solution of (1.1) in $[\underline{u}, \overline{u}]$ can be proven in a similar way.

Remark 4.6. If A depends on s, we have to require additional assumptions. For example, if A satisfies in s a monotonicity condition, the existence of extremal solutions can be shown, too. In case $K = W^{1,p}(\Omega)$, a Lipschitz condition with respect to s is sufficient for proving extremal solutions. For more details we refer to [9].

5. Generalization to discontinuous Nemytskij operators

In this section, we will extend our problem in (1.1) to include discontinuous nonlinearities f of the form $f: \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$. We consider again the elliptic variational-hemivariational inequality

$$\langle Au + F(u), v - u \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; v - u) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0, \quad \forall v \in K,$$

$$(5.1)$$

where all denotations of Section 1 are valid. Here, F denotes the Nemytskij operator given by

$$F(u)(x) = f(x, u(x), u(x), \nabla u(x)),$$

where we will allow f to depend discontinuously on its third argument. The aim of this section is to deal with discontinuous Nemytskij operators $F:[u,\overline{u}]\subset$ $W^{1,p}(\Omega) \to L^q(\Omega)$ by combining the results of Section 4 with an abstract fixed point result for not necessarily continuous operators, cf. [7, Theorem 1.1.1]. This will extend recent results obtained in [31]. Let us recall the definitions of sub- and supersolutions.

Definition 5.1. A function $\underline{u} \in W^{1,p}(\Omega)$ is called a subsolution of (5.1) if the following holds:

- (1) $F(\underline{u}) \in L^q(\Omega)$;
- $(2) \langle A\underline{u} + F(\underline{u}), w \underline{u} \rangle + \int_{\Omega} j_1^{\circ}(\cdot, \underline{u}; w \underline{u}) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma \underline{u}; \gamma w \gamma \underline{u}) d\sigma \ge 0 \quad \forall w \in$

Definition 5.2. A function $\overline{u} \in W^{1,p}(\Omega)$ is called a supersolution of (5.1) if the *following holds:*

- (1) $F(\overline{u}) \in L^q(\Omega)$;
- $(2) \langle A\overline{u} + F(\overline{u}), w \overline{u} \rangle + \int_{\Omega} j_1^{\circ}(\cdot, \overline{u}; w \overline{u}) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma \overline{u}; \gamma w \gamma \overline{u}) d\sigma \geq$

The conditions for Clarke's generalized gradient $s \mapsto \partial j_k(x,s)$ and the functions $j_k: \Omega \times \mathbb{R} \to \mathbb{R}, \ k=1,2$, are the same as in (j1)–(j3). We only change the property (F1) to the following.

- (F2) (i) $x \mapsto f(x, r, u(x), \xi)$ is measurable for all $r \in \mathbb{R}$, for all $\xi \in \mathbb{R}^N$, and for all measurable functions $u: \Omega \to \mathbb{R}$.
 - (ii) $(r,\xi) \mapsto f(x,r,s,\xi)$ is continuous in $\mathbb{R} \times \mathbb{R}^N$ for all $s \in \mathbb{R}$ and for a.a.
 - (iii) $s \mapsto f(x, r, s, \xi)$ is decreasing for all $(r, \xi) \in \mathbb{R} \times \mathbb{R}^N$ and for a.a. $x \in \Omega$.
 - (iv) There exist a constant $c_2 > 0$ and a function $k_2 \in L^q_+(\Omega)$ such that

$$|f(x, r, s, \xi)| \le k_2(x) + c_0|\xi|^{p-1}$$

for a.a. $x \in \Omega$, for all $\xi \in \mathbb{R}^N$, and for all $r, s \in [u(x), \overline{u}(x)]$.

By [1] the mapping $x \mapsto f(x, u(x), u(x), \nabla u(x))$ is measurable for $x \mapsto u(x)$ measurable, however, the associated Nemytskij operator $F: W^{1,p}(\Omega) \subset L^p(\Omega) \to L^q(\Omega)$ is not necessarily continuous. An important tool in extending the previous result to discontinuous Nemytskij operators is the next fixed point result. The proof of this lemma can be found in [7, Theorem 1.1.1].

Lemma 5.3. Let P be a subset of an ordered normed space, $G: P \to P$ an increasing mapping and $G[P] = \{Gx \mid x \in P\}$.

- (1) If G[P] has a lower bound in P and the increasing sequences of G[P] converge weakly in P, then G has the least fixed point x_* , and $x_* = \min\{x \mid Gx \leq x\}$.
- (2) If G[P] has an upper bound in P and the decreasing sequences of G[P] converge weakly in P, then G has the greatest fixed point x^* , and $x^* = \max\{x \mid x \leq Gx\}$.

Our main result of this section is the following theorem.

Theorem 5.4. Assume that hypotheses (A1')-(A3'),(j1)-(j3),(F2), and (4.14) are valid, and let \underline{u} and \overline{u} be sub- and supersolutions of (5.1) satisfying $\underline{u} \leq \overline{u}$ and (2.1). Then there exist extremal solutions u^* and u_* of (5.1) with $\underline{u} \leq u_* \leq u^* \leq \overline{u}$.

Proof. We consider the following auxiliary problem:

$$u \in K: \quad \langle Au + F_z(u), v - u \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; v - u) dx$$

$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0, \quad \forall v \in K,$$
 (5.2)

where $F_z(u)(x) = f(x, u(x), z(x), \nabla u(x))$, and we define the set $H := \{z \in W^{1,p}(\Omega) : z \in [\underline{u}, \overline{u}], \text{ and } z \text{ is a supersolution of (5.1) satisfying } z \wedge K \subset K \}$. On H we introduce the fixed point operator $L : H \to K$ by $z \mapsto u^* =: Lz$, that is, for a given supersolution $z \in H$, the element Lz is the greatest solution of (5.2) in $[\underline{u}, z]$ and thus, it holds $\underline{u} \leq Lz \leq z$ for all $z \in H$. This implies $L : H \to [\underline{u}, \overline{u}] \cap K$. Because of (4.14), Lz is also a supersolution of (5.2) satisfying

$$\langle ALz + F_z(Lz), w - Lz \rangle + \int_{\Omega} j_1^{\circ}(\cdot, Lz; w - Lz) dx + \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma Lz; \gamma w - \gamma Lz) d\sigma \ge 0,$$

for all $w \in Lz \vee K$. By the monotonicity of f with respect to its third argument, $Lz \leq z$, and using the representation $w = Lz + (v - Lz)^+$ for any $v \in K$ we obtain

$$0 \leq \langle ALz + F_z(Lz), (v - Lz)^+ \rangle + \int_{\Omega} j_1^{\circ}(\cdot, Lz; (v - Lz)^+) dx$$
$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma Lz; \gamma(v - Lz)^+) d\sigma$$
$$\leq \langle ALz + F_{Lz}(Lz), (v - Lz)^+ \rangle + \int_{\Omega} j_1^{\circ}(\cdot, Lz; (v - Lz)^+) dx$$
$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma Lz; \gamma(v - Lz)^+) d\sigma,$$

for all $v \in K$. Consequently, Lz is a supersolution of (5.1). This shows $L: H \to H$. Let $v_1, v_2 \in H$ and assume that $v_1 \leq v_2$. Then we have the following.

 $Lv_1 \in [\underline{u}, v_1]$ is the greatest solution of

$$\langle Au + F_{v_1}(u), v - u \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; v - u) dx$$

$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0, \quad \forall v \in K$$

$$(5.3)$$

 $Lv_2 \in [u, v_2]$ is the greatest solution of

$$\langle Au + F_{v_2}(u), v - u \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; v - u) dx$$

$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma v - \gamma u) d\sigma \ge 0, \quad \forall v \in K.$$

$$(5.4)$$

Since $v_1 \leq v_2$, it follows that $Lv_1 \leq v_2$, and due to (4.14), Lv_1 is also a subsolution of (5.3), that is, (5.3) holds, in particular, for $v \in Lv_1 \wedge K$, that is,

$$0 \ge \langle ALv_1 + F_{v_1}(Lv_1), (Lv_1 - v)^+ \rangle - \int_{\Omega} j_1^{\circ}(\cdot, Lv_1; -(Lv_1 - v)^+) dx$$
$$- \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma Lv_1; -\gamma (Lv_1 - v)^+) d\sigma,$$

for all $v \in K$. Using the monotonicity of f with respect to its third argument s yields

$$0 \ge \langle ALv_{1} + F_{v_{1}}(Lv_{1}), (Lv_{1} - v)^{+} \rangle - \int_{\Omega} j_{1}^{\circ}(\cdot, Lv_{1}; -(Lv_{1} - v)^{+}) dx$$

$$- \int_{\partial \Omega} j_{2}^{\circ}(\cdot, \gamma Lv_{1}; -\gamma (Lv_{1} - v)^{+}) d\sigma$$

$$\ge \langle ALv_{1} + F_{v_{2}}(Lv_{1}), (Lv_{1} - v)^{+} \rangle - \int_{\Omega} j_{1}^{\circ}(\cdot, Lv_{1}; -(Lv_{1} - v)^{+}) dx$$

$$- \int_{\partial \Omega} j_{2}^{\circ}(\cdot, \gamma Lv_{1}; -\gamma (Lv_{1} - v)^{+}) d\sigma$$

for all $v \in K$. Hence, Lv_1 is a subsolution of (5.4). By Theorem 4.5, we know there exists a greatest solution of (5.4) in $[Lv_1, v_2]$. But Lv_2 is the greatest solution of (5.4) in $[\underline{u}, v_2] \supseteq [Lv_1, v_2]$ and therefore, $Lv_1 \le Lv_2$. This shows that L is increasing. In the last step we have to prove that any decreasing sequence of L(H) converges weakly in H. Let $(u_n) = (Lz_n) \subset L(H) \subset H$ be a decreasing sequence. Then $u_n(x) \setminus u(x)$ for a.a. $x \in \Omega$ for some $u \in [\underline{u}, \overline{u}]$. The boundedness of u_n in $W^{1,p}(\Omega)$ can be shown similarly as in Section 4. Thus the compact imbedding $i: W^{1,p}(\Omega) \to L^p(\Omega)$ along with the monotony of u_n as well as the compactness of the trace operator $\gamma: W^{1,p}(\Omega) \to L^p(\partial\Omega)$ implies

$$u_n \to u$$
 in $W^{1,p}(\Omega)$, $u_n \to u$ in $L^p(\Omega)$ and a.e. pointwise in Ω , $\gamma u_n \to \gamma u$ in $L^p(\partial \Omega)$ and a.e. pointwise in $\partial \Omega$.

Since $u_n \in K$, it follows $u \in K$. From (5.2) with u replaced by u_n and v by u, and using the fact that $(s,r) \mapsto j_k^{o}(x,s;r), k=1,2$, is upper semicontinuous, we obtain

by applying Fatou's Lemma

$$\begin{split} & \limsup_{n \to \infty} \langle Au_n, u_n - u \rangle \\ & \leq \limsup_{n \to \infty} \langle F_{z_n}(u_n), u - u_n \rangle + \limsup_{n \to \infty} \int_{\Omega} j_1^{\mathrm{o}}(\cdot, u_n; u - u_n) dx \\ & + \limsup_{n \to \infty} \int_{\partial \Omega} j_2^{\mathrm{o}}(\cdot, \gamma u_n; \gamma u - \gamma u_n) d\sigma \\ & \leq \limsup_{n \to \infty} \langle F_{z_n}(u_n), u - u_n \rangle + \int_{\Omega} \limsup_{n \to \infty} j_1^{\mathrm{o}}(\cdot, u_n; u - u_n) dx \\ & \leq \lim_{n \to \infty} \sup_{j_1^{\mathrm{o}}(\cdot, \gamma u_n; \gamma u - \gamma u_n)} d\sigma \\ & + \int_{\partial \Omega} \underbrace{\lim_{n \to \infty} \sup_{j_2^{\mathrm{o}}(\cdot, \gamma u_n; \gamma u - \gamma u_n)}_{\leq j_2^{\mathrm{o}}(\cdot, \gamma u; \gamma 0) = 0} d\sigma \\ & \leq 0. \end{split}$$

The S_+ -property of A provides the strong convergence of (u_n) in $W^{1,p}(\Omega)$. As $Lz_n = u_n$ is also a supersolution of (5.2) Definition 5.2 yields

$$\langle Au_n + F_{z_n}(u_n), (v - u_n)^+ \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u_n; (v - u_n)^+) dx$$
$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u_n; \gamma (v - u_n)^+) d\sigma \ge 0$$

for all $v \in K$. Due to $z_n \geq u_n \geq u$ and the monotonicity of f we get

$$0 \leq \langle Au_n + F_{z_n}(u_n), (v - u_n)^+ \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u_n; (v - u_n)^+) dx$$
$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u_n; \gamma (v - u_n)^+) d\sigma$$
$$\leq \langle Au_n + F_u(u_n), (v - u_n)^+ \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u_n; (v - u_n)^+) dx$$
$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u_n; \gamma (v - u_n)^+) d\sigma$$

for all $v \in K$ and since the mapping $u \mapsto u^+ = \max(u,0)$ is continuous from $W^{1,p}(\Omega)$ to itself (cf. [22]), we can pass to the upper limit on the right hand side for $n \to \infty$. This yields

$$\langle Au + F_u(u), (v-u)^+ \rangle + \int_{\Omega} j_1^{\circ}(\cdot, u; (v-u)^+) dx$$
$$+ \int_{\partial \Omega} j_2^{\circ}(\cdot, \gamma u; \gamma (v-u)^+) dx \ge 0, \quad \forall v \in K,$$

which shows that u is a supersolution of (5.1), that is, $u \in H$. As \overline{u} is an upper bound of L(H), we can apply Lemma 5.3, which yields the existence of a greatest fixed point u^* of L in H. This implies that u^* must be the greatest solution of (5.1) in $[\underline{u}, \overline{u}]$. By analogous reasoning, one shows the existence of a smallest solution u_* of (5.1). This completes the proof of the theorem.

Remark. Sub- and supersolutions of problem (5.1) have been constructed in [15] under the conditions (A1')-(A3'), (j1)-(j2) and (F2)(i)-(F2)(iii), where the gradient dependence of f has been dropped, meaning $f(x,r,s) := f(x,r,s,\xi)$. Further, it is assumed that $A = -\Delta_p$ which is the negative p-Laplacian defined by

$$\Delta_p u = \operatorname{div}(|\nabla u|^{p-2} \nabla u) \quad \text{where} \quad \nabla u = (\partial u / \partial x_1, \dots, \partial u / \partial x_N).$$

The coefficients $a_i, i = 1, ..., N$ are given by

$$a_i(x, s, \xi) = |\xi|^{p-2} \xi_i.$$

Thus, hypothesis (A1') is satisfied with $k_0 = 0$ and $c_0 = 1$. Hypothesis (A2') is a consequence of the inequalities from the vector-valued function $\xi \mapsto |\xi|^{p-2}\xi$ (see [9, Page 37]) and (A3') is satisfied with $c_1 = 1$ and $k_1 = 0$. The construction is done by using solutions of simple auxiliary elliptic boundary value problems and the eigenfunction of the p-Laplacian which belongs to its first eigenvalue.

References

- [1] J. Appell and P. P. Zabrejko. Nonlinear superposition operators, volume 95 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990.
- [2] G. Barletta. Existence results for semilinear elliptical hemivariational inequalities. Nonlinear Anal., 68(8):2417-2430, 2008.
- [3] G. Bonanno and P. Candito. On a class of nonlinear variational-hemivariational inequalities. Appl. Anal., 83(12):1229-1244, 2004.
- [4] S. Carl. Existence and comparison results for variational-hemivariational inequalities. J. Inequal. Appl., (1):33-40, 2005.
- S. Carl. Existence and comparison results for noncoercive and nonmonotone multivalued elliptic problems. *Nonlinear Anal.*, 65(8):1532–1546, 2006.
- [6] S. Carl. The sub- and supersolution method for variational-hemivariational inequalities. Nonlinear Anal., 69(3):816-822, 2008.
- [7] S. Carl and S. Heikkilä. Nonlinear differential equations in ordered spaces, volume 111 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2000.
- S. Carl and S. Heikkilä. Existence results for nonlocal and nonsmooth hemivariational inequalities. J. Inequal. Appl., pages Art. ID 79532, 13, 2006.
- S. Carl, V. K. Le, and D. Motreanu. Nonsmooth variational problems and their inequalities. Springer Monographs in Mathematics. Springer, New York, 2007. Comparison principles and applications.
- [10] S. Carl, Vy K. Le, and D. Motreanu. Existence and comparison principles for general quasilinear variational-hemivariational inequalities. J. Math. Anal. Appl., 302(1):65-83, 2005.
- [11] S. Carl, Vy K. Le, and D. Motreanu. Existence, comparison, and compactness results for quasilinear variational-hemivariational inequalities. Int. J. Math. Math. Sci., (3):401-417,
- [12] S. Carl and D. Motreanu. General comparison principle for quasilinear elliptic inclusions. Nonlinear Anal., 70(2):1105–1112, 2009.
- [13] S. Carl and D. Motreanu. Directness of solution set for some quasilinear multivalued parabolic problems. Appl. Anal., 89:161-174, 2010.
- [14] S. Carl and Z. Naniewicz. Vector quasi-hemivariational inequalities and discontinuous elliptic systems. J. Global Optim., 34(4):609-634, 2006.
- [15] S. Carl and P. Winkert. General comparison principle for variational-hemivariational inequalities. Preprint: http://www.mathematik.uni-halle.de/reports/sources/2009/09-03report.pdf,
- [16] F. H. Clarke. Optimization and nonsmooth analysis, volume 5 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1990.

- [17] Z. Denkowski, L. Gasiński, and N. S. Papageorgiou. Existence and multiplicity of solutions for semilinear hemivariational inequalities at resonance. *Nonlinear Anal.*, 66(6):1329–1340, 2007.
- [18] M. Filippakis, L. Gasiński, and N. S. Papageorgiou. Multiple positive solutions for eigenvalue problems of hemivariational inequalities. *Positivity*, 10(3):491–515, 2006.
- [19] M. E. Filippakis and N. S. Papageorgiou. Solvability of nonlinear variational-hemivariational inequalities. J. Math. Anal. Appl., 311(1):162–181, 2005.
- [20] M. E. Filippakis and N. S. Papageorgiou. Existence of positive solutions for nonlinear noncoercive hemivariational inequalities. *Canad. Math. Bull.*, 50(3):356–364, 2007.
- [21] D. Goeleven, D. Motreanu, and P. D. Panagiotopoulos. Eigenvalue problems for variational-hemivariational inequalities at resonance. *Nonlinear Anal.*, 33(2):161–180, 1998.
- [22] J. Heinonen, T. Kilpeläinen, and O. Martio. Nonlinear potential theory of degenerate elliptic equations. Dover Publications Inc., Mineola, NY, 2006. Unabridged republication of the 1993 original.
- [23] S. Hu and N. S. Papageorgiou. Neumann problems for nonlinear hemivariational inequalities. Math. Nachr., 280(3):290–301, 2007.
- [24] A. Kristály, C. Varga, and V. Varga. A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities. J. Math. Anal. Appl., 325(2):975–986, 2007.
- [25] S. Th. Kyritsi and N. S. Papageorgiou. Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities. *Nonlinear Anal.*, 61(3):373–403, 2005.
- [26] H. Lisei and C. Varga. Some applications to variational-hemivariational inequalities of the principle of symmetric criticality for Motreanu-Panagiotopoulos type functionals. J. Global Optim., 36(2):283–305, 2006.
- [27] S. A. Marano, G. Molica Bisci, and D. Motreanu. Multiple solutions for a class of elliptic hemivariational inequalities. J. Math. Anal. Appl., 337(1):85–97, 2008.
- [28] S. A. Marano and N. S. Papageorgiou. On some elliptic hemivariational and variationalhemivariational inequalities. *Nonlinear Anal.*, 62(4):757–774, 2005.
- [29] D. Motreanu, V. V. Motreanu, and N. S. Papageorgiou. Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with p-Laplacian. Trans. Amer. Math. Soc., 360(5):2527–2545, 2008.
- [30] Z. Naniewicz and P. D. Panagiotopoulos. Mathematical theory of hemivariational inequalities and applications, volume 188 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York, 1995.
- [31] P. Winkert. Discontinuous variational-hemivariational inequalities involving the p-Laplacian. J. Inequal. Appl., pages Art. ID 13579, 11, 2007.
- [32] E. Zeidler. *Nonlinear functional analysis and its applications. II/B.* Springer-Verlag, New York, 1990. Nonlinear monotone operators, Translated from the German by the author and Leo F. Boron.

Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Strasse 5, 06120 Halle, Germany

 $E ext{-}mail\ address: siegfried.carl@mathematik.uni-halle.de}$

Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Strasse $5,\,06120$ Halle, Germany

E-mail address: patrick.winkert@mathematik.uni-halle.de