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Abstract. The purpose of this paper is to study the existence and nonex-

istence of nontrivial solutions for quasilinear elliptic problems driven by the
nonhomogeneous (p, q)-Laplace operator −∆p −∆q depending on two param-

eters in bounded and unbounded domains. First, using variational methods,

we prove the existence and nonexistence of positive solutions for a class of sub-
linear (p, q)-Laplacian problems with two parameters. Second, using a non-

standard variational approach, we prove the existence of bounded solutions

for nonlinear problems of (p + q) sublinear type involving the (p, q)-Laplace
operator with two parameters in unbounded domains.

1. Introduction

In this paper, we are concerned with the study of two nonlinear problems in-
volving a differential operator of (p, q)-Laplacian type with positive parameters of
the form

−∆pu−∆qu = λf(x, u) + µg(x, u), x ∈ Ω (P1)

and
−∆pu− µ∆qu = λf(x, u), x ∈ RN , (P2)

where Ω ⊂ RN , N ≥ 2, is either a bounded domain or an unbounded domain,
1 < q < p < +∞, λ and µ are positive parameters and ∆ru = div(|∇u|r−2∇u)
stands for the classical r-Laplacian for 1 < r < ∞.

It should be mentioned that in recent years several studies have been carried out
to investigate related problems and many papers have appeared dealing with equa-
tions driven by the (p, q)-Laplacian in both bounded and unbounded domains. We
refer, for example, to the papers of Baldelli-Filippucci [2], Baldelli-Brizi-Filippucci
[3, 4], Bobkov-Tanaka [5, 6, 7], Candito-Marano-Perera [8], Motreanu-Tanaka [14],
see also the references therein. Note that the (p, q)-Laplacian appears in a wide
range of applications, we mention e.g.,biophysics, plasma physics, reaction-diffusion
equations, and models of elementary particles.

Regarding problem (P1) let us point out that more works have been done in
this direction in the case of nonlinear problems involving the p-Laplacian. Namely,
Maya-Shivaji [13] studied the semilinear case p = 2 and similar results have been
established by Perera [15] and El Manouni-Perera [10] when only the p-Laplacian
operator appears with p > 1 and p ̸= 2 in the cases of scalar equations and systems
of two second order quasilinear equations, respectively.
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As for problem (P2), we consider different type of problems with two parameters
for the (p, q)-Laplacian in RN . In particular each parameter is on one side of the
quasilinear equation. Here, we do not minimize a Rayleigh-type quotient, but we
use a nonstandard variational approach and show the existence of at least one
solution corresponding to the three positive parameters. Additionally, we establish
some regularity results for the solution obtained in terms of global L∞-estimates
by constructing an iteration scheme to bound the maximal norm of the solution
following Moser’s iteration technique, see, for example, the monograph of Drábek-
Kufner-Nicolosi [9].

2. Bounded case

Let Ω ⊂ RN , N ≥ 2, be a bounded domain in RN with smooth boundary ∂Ω.
We consider the following Dirichlet problem

−∆pu−∆qu = λf(x, u) + µg(x, u) in Ω,

u = 0 on ∂Ω,
(2.1)

where 1 < q < p < ∞, λ > 0, µ > 0, ∆ru = div(|∇u|r−2∇u) stands for the
usual r-Laplacian with 1 < r < ∞ and f, g : Ω × [0,∞) → R are assumed to be
Carathéodory functions having subcritical growth of the form

|f(x, t)| ≤ C1t
p−1, |g(x, t)| ≤ C2t

q−1 for all (x, t), (2.2)

with positive constants C1, C2. We define

λ1 = inf
u∈W\{0}

∫
Ω
(|∇u|p + |∇u|q) dx∫

Ω
|u|p dx

,

µ1 = inf
u∈W\{0}

∫
Ω
(|∇u|p + |∇u|q) dx∫

Ω
|u|q dx

,

(2.3)

where W = W 1,p
0 (Ω) which can be equipped with the equivalent norm

∥u∥ := ∥∇u∥p =

(∫
Ω

|∇u|p dx
) 1

p

for all u ∈ W 1,p
0 (Ω).

Remark 2.1. Regarding the definitions of λ1 and µ1 in (2.3), since q < p, λ1 is
just the first eigenvalue of the p-Laplacian. Indeed, it is clear that λ1 is greater than
or equal to the first eigenvalue. Taking u = tϕ1, where ϕ1 is a first eigenfunction
of the p-Laplacian with t > 0, and letting t → ∞ shows that λ1 is less than or equal
to the first eigenvalue. A similar argument shows that µ1 is the first eigenvalue of
the q-Laplacian.

We start by a nonexistence result for positive solution of problem (2.1).

Theorem 2.2. There exists α, β > 0 such that for all λ, µ satisfying λα+ µβ < 1,
problem (2.1) has no positive solutions.

Proof. Suppose that (2.1) has a positive solution u ∈ W . Testing the weak formu-
lation of (2.1) by u, using (2.2) and (2.3) gives∫

Ω

|∇u|p dx+

∫
Ω

|∇u|q dx = λ

∫
Ω

f(x, u)udx+ µ

∫
Ω

g(x, u)udx

≤ λC1

∫
Ω

|u|p dx+ µC2

∫
Ω

|u|q dx
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≤
(
λ
C1

λ1
+ µ

C2

µ1

)(∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx
)
.

The assertion of the theorem follows. □

The next theorem shows the existence of positive solutions for problem (2.1).

Theorem 2.3. Assume the following conditions:

(F1) there exists δ > 0 such that

F (x, t) :=

∫ t

0

f(x, τ) dτ ≤ 0, G(x, t) :=

∫ t

0

g(x, τ) dτ ≤ 0,

when tp + tq ≤ δ;
(F2) there exists t0 > 0 such that F (x, t0) > 0 and G(x, t0) > 0 for a.a.x ∈ Ω;
(F3) it holds

lim sup
t→∞

F (x, t)

tp
≤ 0 and lim sup

t→∞

G(x, t)

tq
≤ 0 uniformly for a.a.x ∈ Ω.

Then exists a number ω > 0 such that (2.1) has at least two positive solutions for
λ or µ ≥ ω.

Proof. We set f(x, t) = g(x, t) = 0 if t < 0 for a.a.x ∈ Ω and consider the C1-
functional Φλ,µ : W → R given by

Φλ,µ(u) =

∫
Ω

1

p
|∇u|p dx+

∫
Ω

1

q
|∇u|q dx−

∫
Ω

λF (x, u) dx−
∫
Ω

µG(x, u) dx

for all u ∈ W . If u is a critical point of Φλ,µ, denoting by u− the negative part of
u, we have

0 = ⟨Φ ′
λ,µ(u)), u

−⟩ =
∫
Ω

|∇u|p−2∇u · ∇u− dx+

∫
Ω

|∇u|q−2∇u · ∇u− dx

−
∫
Ω

λf(x, u)u− dx−
∫
Ω

µg(x, u)u− dx

= ∥∇u−∥pp + ∥∇u−∥qq.

This shows u ≥ 0. Furthermore, u ∈ L∞(Ω) ∩ C1(Ω) (see, for example, Ho-Kim-
Winkert-Zhang [11, Theorem 3.1] and Lieberman [12, Theorem 1.7]), so the posi-
tivity of u now follows from the weak Harnack type inequality proved by Trudinger
[18, Theorem 1.1], that is, either u > 0 or u ≡ 0. Thus, nontrivial critical points of
ϕλ,µ are positive solutions of (2.1).

By the growth condition (2.2) we get

|F (x, t)| ≤ C3|t|p, |G(x, t)| ≤ C4|t|q for all (x, t) ∈ Ω× R, (2.4)

for some positive constants C3 and C4. By (F3) there is Bλ,µ > 0 such that

F (x, t) ≤ λ1

3pλ
|t|p and G(x, t) ≤ µ1

3pµ
|t|q for all |t| ≥ Bλ,µ. (2.5)

By using (2.4) and (2.5), there is a constant Cλ,µ > 0 such that

λF (x, t) + µG(x, t) ≤ λ1

3p
|t|p + µ1

3p
|t|q + Cλ,µ for all (x, t) ∈ Ω× R. (2.6)
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Hence, since q < p, by applying (2.6) and (2.3), it follows that

Φλ,µ(u) ≥
∫
Ω

(
1

p
|∇u|p + 1

q
|∇u|q − λ1

3p
|u|p − µ1

3p
|u|q − Cλ,µ

)
dx,

≥
∫
Ω

(
1

p
|∇u|p + 1

p
|∇u|q − 2

3p
(|∇u|p + |∇u|q)− Cλ,µ

)
dx

≥ γ∥u∥p − Cλ,µ|Ω|N ,

where γ =
1

3p
and |·|N is the Lebesgue measure in RN . Hence, Φλ,µ is bounded from

below and coercive. In addition, Φλ,µ is sequentially weakly lower semicontinuous
which implies the existence of a global minimizer u1 ∈ W 1,p(Ω) of Φλ,µ(u).

Claim 1: There exists ω > 0 such that inf Φλ,µ < 0 for λ ≥ ω or µ ≥ ω.
In order to prove this, we take a sufficiently large compact subset Ω′ of Ω and

u0 ∈ W 1,p
0 (Ω) such that u0 = t0 on Ω′ and 0 ≤ u0 ≤ t0 on Ω \ Ω′, where t0 is as in

(F2). Then we have∫
Ω

F (x, u0) dx ≥
∫
Ω′

F (x, t0) dx− C1|t0|p|Ω \ Ω′|N > 0∫
Ω

G(x, u0) dx ≥
∫
Ω′

G(x, t0) dx− C2|t0|q|Ω \ Ω′|N > 0,

for |Ω \ Ω′|N sufficiently small. This yields

Φλ,µ(u0)

≤
∫
Ω

(
1

p
|∇u0|p +

1

q
|∇u0|q

)
dx− λ

∫
Ω

F (x, u0) dx− µ

∫
Ω

G(x, u0) dx < 0

for λ or µ large enough. This proves Claim 1.
From Claim 1, choosing λ or µ ≥ ω, we get that Φλ,µ(u1) < 0 = Φλ,µ(0) and so

u1 ̸= 0. Now, let us fix λ, µ with λ or µ ≥ ω.
Claim 2: The origin is a strict local minimizer of Φλ,µ.

Let u ∈ W 1,p
0 (Ω). We set Ωu = {x ∈ Ω : |u(x)|p + |u(x)|q > δ}, where δ > 0 is

given in (F1). By hypothesis (F1), F (x, u) ≤ 0 and G(x, u) ≤ 0 on Ω \ Ωu. Then
we have

Φλ,µ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qp − λ

∫
Ωu

F (x, u) dx− λ

∫
Ω\Ωu

F (x, u) dx

− µ

∫
Ωu

G(x, u) dx− µ

∫
Ω\Ωu

G(x, u) dx

≥ 1

p
∥u∥p − λ

∫
Ωu

F (x, u)dx− µ

∫
Ωu

G(x, u) dx.

(2.7)

Applying (2.2), Hölder’s inequality and the Sobolev embedding theorem, it follows
that

λ

∫
Ωu

F (x, u) dx+ µ

∫
Ωu

G(x, u) dx

≤ λC1

∫
Ωu

|u|p dx+ µC2

∫
Ωu

|u|q dx

≤ λC ′
1|Ωu|

1− p
r

N ∥∇u∥pp + µC ′
2|Ωu|

1− q
s

N ∥∇u∥qq,

(2.8)
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for some positive constants C ′
1 and C ′

1 and where r =
Np

N − p
if p < N, r > p if

p ≥ N and s =
Nq

N − q
if q < N , s > q if q ≥ N . Since q < p and

1 <
|u|p + |u|q

δ
on Ωu,

we obtain

|Ωu|N ≤ 1

δ

∫
Ωu

(|u|p + |u|q) dx ≤ C ′∥u∥p

for some positive constant C ′. Hence |Ωu|N → 0 as ∥u∥ → 0 and Claim 2 follows
from (2.7) and (2.8).

Since Φλ,µ is coercive, every Palais-Smale sequence is bounded and hence con-
tains a convergent subsequence. So the mountain pass lemma now gives a critical
point u2 of Φλ,µ at the level

c := inf
γ∈Γ

max
u∈γ([0,1])

Φλ,µ(u) > 0,

where Γ = {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = 0, γ(1) = u1} is the class of paths

joining the origin to u1. Therefore we found two positive solutions u1, u2 such that
Φλ,µ(u1) < 0 = Φλ,µ(0) < Φλ,µ(u2).
This completes the proof of the theorem. □

3. Unbounded case

In this part we consider the following nonlinear problem in RN

−∆pu− µ∆qu = λf(x, u) in RN , (3.1)

where 1 < q < p < N,N < p + q, λ, µ > 0 are two real parameters and f : RN ×
[0,∞) → R+ is a Carathéodory function that satisfies the following conditions:

(H1) There exists δ ∈ (0, 1) such that 0 ≤ f(x, t) ≤ m(x)tp+q−1 for a.a.x ∈ RN

and for all t ≥ 0, where m is a positive function such that m ∈ Lr
(
RN
)
∩

Lr+δ
(
RN
)
with r =

1

1− p
p∗ − q

q∗
;

(H2) There exists a nonempty open subset Ω of RN and constants δ0, δ1 > 0
such that f(x, t) > 0 for all (x, t) ∈ Ω× (δ0, δ1).

We denote by X the reflexive Banach space D1,p
(
RN
)
∩ D1,q

(
RN
)
, where for

1 < s < N

D1,s
(
RN
)
=
{
u ∈ Ls∗

(
RN
)
: ∇u ∈ Ls

(
RN
)}

,

is equipped with the norm

∥u∥ := ∥u∥X = ∥u∥D1,p(RN ) + ∥u∥D1,q(RN ).

By a weak solution of problem (3.1) we mean any u ∈ X such that∫
Rn

|∇u|p−2∇u · ∇φdx+ µ

∫
Rn

|∇u|q−2∇u · ∇φdx = λ

∫
RN

f(x, u)φdx (3.2)

is satisfied for all φ ∈ X.
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Note that r = N
p+q−N and the assumptions N < p+ q as well as (H1) guarantee

that r and both integrals in (3.2) are well-defined, respectively.

Our first result is the following one.

Theorem 3.1. Let 1 < q < p < N with N < p+q and suppose that (H1)–(H2) are
satisfied. Then there exist λ, µ > 0 such that problem (3.1) has a positive solution
u ∈ X.

Proof. Let 1 < α < q be fixed and set F (x, t) =
∫ t

0
f(x, τ) dτ . We consider the

functional J : X \ {0} → R defined by

J(u) =

∫
RN

F (x, u) dx

(∥∇u∥αp + ∥∇u∥p∗
p )(∥∇u∥αq + ∥∇u∥q∗q )

,

which is well defined and bounded. Indeed, in view of (H1), the Sobolev embedding
theorem and since α < p < p∗ and α < q < q∗, we get∫

RN

F (x, u) dx ≤ ∥m∥r∥u∥pp∗∥u∥qq∗

≤ c1∥∇u∥pp∥∇u∥qq
≤ c1(∥∇u∥αp + ∥∇u∥p

∗

p )(∥∇u∥αq + ∥∇u∥q
∗

q ),

for some c1 > 0. Hence, we have

J(u) ≤ c1 for all u ∈ X \ {0}.

Let S := sup
0̸=u∈X

J(u) and choose φ0 ∈ C∞
0

(
RN
)
such that

suppφ0 ⊂⊂ Ω and sup
x∈RN

φ0(x) > δ0,

where Ω and δ0 are given in (H2). Thanks to (H2), it holds F (x, t) > 0 and
G(x, t) > 0 on Ω × (δ0,∞). It follows that S > S0 with S0 = 1

2J(φ0) > 0. Let
{uk}k≥1 ⊂ X with uk ̸= 0 for all k ∈ N be a sequence such that

J(uk) → S as k → +∞.

Since S > S0 and J(uk
+) ≥ J(uk), one can choose

uk ≥ 0 and J(uk) ≥ S0 for all k ∈ N.
Then we obtain

S0(∥∇uk∥αp + ∥∇uk∥p
∗

p )(∥∇uk∥αq + ∥∇uk∥q
∗

q )

≤
∫
RN

F (x, uk) dx ≤ c1∥∇uk∥pp∥∇uk∥qq

for all k ∈ N. It follows that ∥∇uk∥p and ∥∇uk∥q are bounded. Hence there exist
constants 0 < A1 < A2 < ∞ and 0 < A3 < A4 < ∞ such that

A1 ≤ ∥∇uk∥p ≤ A2 and A3 ≤ ∥∇uk∥q ≤ A4 for all k ∈ N.

Then, due to the reflexivity of X, one can find a subsequence (still denoted by
{uk}k≥1) and an element u ∈ X such that

uk ⇀ u in X and a.e. in RN .
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Then uk ⇀ u in D1,p
(
RN
)
and uk ⇀ u in D1,q

(
RN
)
.

Let now R > 0. Using the Rellich–Kondrachov theorem (see Adams [1, p. 144],
p. 144), the embedding D1,p (BR) ↪→ Lp(BR) is compact, where BR denotes the
ball in RN with center zero and radius R > 0. This implies that

uk → u in Lp (BR) .

Since RN =
⋃

R>0 BR, we deduce that u ≥ 0 a.e. in RN . By using Hölder’s inequal-
ity, (H1) and (H2), we have for all R > 0 and k ∈ N,∣∣∣∣∣

∫
|x|≥R

F (x, uk) dx

∣∣∣∣∣
≤

(∫
|x|≥R

m(x)r dx

) 1
r
(∫

|x|≥R

|uk|p
∗
dx

)N−p
N
(∫

|x|≥R

|uk|q
∗
dx

)N−q
N

≤ c2

(∫
|x|≥R

m(x)r dx

) 1
r

,

where c2 is a positive constant independent of R and k. The same holds also for u,
that is ∣∣∣∣∣

∫
|x|≥R

F (x, u) dx

∣∣∣∣∣ ≤ c3

(∫
|x|≥R

m(x)r dx

) 1
r

,

for some constant c3 > 0 independent of R. Since m ∈ Lr(RN ), we have

lim
R→∞

∫
|x|≥R

m(x)r dx = 0,

which implies that for each ε > 0 there exists Rε > 0 such that∣∣∣∣∣
∫
|x|≥Rε

F (x, uk) dx

∣∣∣∣∣ ≤ ε,

∣∣∣∣∣
∫
|x|≥Rε

|F (x, u) dx

∣∣∣∣∣ ≤ ε (3.3)

for all k ∈ N. On the other hand, applying Young’s inequality, for any x ∈ R and
t ∈ (0,∞), we have the following estimate

F (x, t) ≤ m(x)r+δ

r + δ
+

t(p+q)(r+δ)′

(r + δ)
′

for a.a.x ∈ Bε = {x ∈ RN : |x| < Rε} and for all t ∈ R. Note that (p+q) (r + δ)
′
<

p∗, since (r + δ)
′
< r′ < p∗

p+q .Hence the continuity of the Nemytskij operator implies∫
|x|<Rε

F (x, uk) dx →
∫
|x|<Rε

F (x, u) dx, (3.4)

as k → ∞ and any fixed ε > 0. Combining (3.3) and (3.4) we conclude that∫
RN

F (x, uk) dx →
∫
RN

F (x, u) dx,

as k → ∞. Hence, since J(uk) ≥ S0 we have∫
RN

F (x, u) dx ≥ S0(∥∇uk∥αp + ∥∇uk∥p
∗

p )(∥∇uk∥αq + α∥∇uk∥q
∗

q )

≥ S0(A
α
1 +Ap∗

1 )(Aα
3 +Ap∗

3 ) > 0.
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Therefore u ̸≡ 0 in RN .
From the weak lower semicontinuity of the norm in D1,p(RN ) and in D1,q(RN ),

we obtain

S = lim sup
k→∞

J(uk) ≤

∫
RN

F (x, u) dx

lim inf
k→∞

(∥∇uk∥αp + ∥∇uk∥p
∗

p )(∥∇uk∥αq + ∥∇uk∥q
∗

q )
.

Thus

S ≤

∫
RN

F (x, u) dx

(∥∇u∥αp + ∥∇u∥p∗
p )(∥∇u∥αq + ∥∇u∥q∗q )

= J(u).

Consequently, we get J(u) = S.
Let φ be a fixed element in X and consider

ξp(ε) = ∥u+ εφ∥p, ξq(ε) = ∥u+ εφ∥q.
Due to the fact that u ̸= 0, and the continuity of ξp and ξq, we can find ε0 > 0 such
that

∥u+ εφ∥p > 0 and ∥u+ εφ∥q > 0 for all ε ∈ (−ε0, ε0).

For ε ∈ (−ε0, ε0), we define the function

η(ε) = J(u+ εφ)

=

∫
RN

F (x, u+ εφ) dx

(∥∇u+ ε∇φ∥αp + ∥∇u+ ε∇φ∥p∗
p )(∥∇u+ ε∇φ∥αq + ∥∇u+ ε∇φ∥q∗q )

.

The functions ∫
RN

F (x, u+ εφ) dx,

K1(ε) = ∥∇u+ ε∇φ∥αp , K2(ε) = ∥∇u+ ε∇φ∥p
∗

p ,

K3(ε) = ∥∇u+ ε∇φ∥αq , K4(ε) = ∥∇u+ ε∇φ∥q
∗

q

are differentiable with respect to ε with derivatives

K ′
1(ε) = α∥∇u+ ε∇φ∥α−p

p

∫
RN

|∇u+ ε∇φ|p−2(∇u+ ε∇φ) · ∇φdx,

K ′
2(ε) = p∗∥∇u+ ε∇φ∥p

∗−p
p

∫
RN

|∇u+ ε∇φ|p−2(∇u+ ε∇φ) · ∇φdx,

K ′
3(ε) = α∥∇u+ ε∇φ∥α−q

q

∫
RN

|∇u+ ε∇φ|q−2(∇u+ ε∇φ) · ∇φdx,

K ′
4(ε) = q∗∥∇u+ ε∇φ∥q

∗−q
q

∫
RN

|∇u+ ε∇φ|q−2(∇u+ ε∇φ) · ∇φdx.

Therefore, we have

η′(ε) =

(K1(ε) +K2(ε))(K3(ε) +K4(ε))

∫
RN

f(x, u+ εφ)φdx

(K1(ε) +K2(ε))2(K3(ε) +K4(ε))2
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−
(K ′

1(ε) +K ′
2(ε))(K3(ε) +K4(ε))

∫
RN

F (x, u+ εφ) dx

(K1(ε) +K2(ε))2(K3(ε) +K4(ε))2

−
(K ′

3(ε) +K ′
4(ε))(K1(ε) +K2(ε))

∫
RN

F (x, u+ εφ) dx

(K1(ε) +K2(ε))2(K3(ε) +K4(ε))2
.

Since zero is a global maximum of the function η, one has η′(0) = 0. This implies
that

(K1(0) +K2(0))(K3(0) +K4(0))

∫
RN

f(x, u)φdx

= (K ′
1(0) +K ′

2(0))(K3(0) +K4(0))

∫
RN

F (x, u) dx

+ (K ′
3(0) +K ′

4(0))(K1(0) +K2(0))

∫
RN

F (x, u) dx.

Therefore,

(K ′
1(0) +K ′

2(0))(K3(0) +K4(0)) + (K ′
3(0) +K ′

4(0))(K1(0) +K2(0))

=
(K1(0) +K2(0))(K3(0) +K4(0))∫

RN

F (x, u) dx

∫
RN

f(x, u)φdx.

Finally, we get∫
RN

|∇u|p−2∇u · ∇φdx+ µ

∫
RN

|∇u|q−2∇u · ∇φdx = λ

∫
RN

f(x, u)φdx,

for all φ ∈ X, where

λ =
(∥∇u∥αp + ∥∇u∥p∗

p )(∥∇u∥αq + ∥∇u∥q∗q )

(α∥∇u∥α−p
p + p∗∥∇u∥p∗−p

p )(∥∇u∥αq + ∥∇u∥q∗q )

∫
RN

F (x, u) dx

,

µ =
(α∥∇u∥α−q

q + q∗∥∇u∥q∗−q
q )(∥∇u∥αp + ∥∇u∥p∗

p )

(α∥∇u∥α−p
p + p∗∥∇u∥p∗−p

p )(∥∇u∥αq + ∥∇u∥q∗q )
.

This completes the proof of Theorem 3.1. □

The following theorem gives the boundedness, positivity and decay of weak so-
lutions to (3.1).

Theorem 3.2. Under the same assumptions of Theorem 3.1, we have u ∈ Lσ
(
RN
)

for any σ ∈ [q∗,∞]. Moreover, u > 0 in RN and lim
|x|→∞

u(x) = 0.

Proof. Let M > 0 and define the cut-off function uM (x) = inf{u(x),M}. Let κ > 0

and let φ = uκp+1
M be a test function in (3.2). Note that φ ∈ X ∩ L∞(RN ). This

yields

(κp+ 1)

(∫
RN

uκp
M |∇uM |p dx+ µ

∫
RN

uκp
M |∇uM |q dx

)
≤ λ

∫
RN

mup+q−1uκp+1
M dx.

On one hand, we have

1

cp4

κp+ 1

(κ+ 1)p

(∫
RN

u
(κ+1)p∗

M dx

) p
p∗

≤ κp+ 1

(κ+ 1)p

∫
RN

|∇uκ+1
M |p dx,
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for some constant c4 > 0. We also have

κp+ 1

(κ+ 1)p

∫
RN

|∇uκ+1
M |p dx

= (κp+ 1)

∫
RN

uκp
M |∇uM |p dx

≤ (κp+ 1)

(∫
RN

uκp
M |∇uM |p dx+ µ

∫
RN

uκp
M |∇uM |q dx

)
.

Hence
1

cp4

κp+ 1

(κ+ 1)p

(∫
RN

u
(κ+1)p∗

M dx

) p
p∗

≤ λ

∫
RN

mup+q−1uκp+1
M dx. (3.5)

On the other hand, for 0 < δ < 1 small enough, let t =
p∗pr

pr + δp∗

r+δ

. Remark that

p < t < p∗ and
1

r + δ
+

q

q∗
+

p

t
= 1. Regarding the second term in the right-hand

side of (3.5), using (H1) and Hölder’s inequality, we derive∫
RN

mup+q−1uκp+1
M dx

≤
∫
RN

muqu(κ+1)p dx

≤
(∫

(m(x))r+δ dx

) 1
r+δ
(∫

uq∗ dx

) q
q∗
(∫

u(k+1)t dx

) p
t

.

(3.6)

Combining (3.5) and (3.6), there exists a constant c5 > 0 independent of M > 0
and κ > 0 such that(∫

RN

u
(κ+1)p∗

M dx

) p
p∗

≤ c5
(κ+ 1)p

κp+ 1

(∫
u(k+1)t dx

) p
t

,

that is

∥uM∥(κ+1)p∗ ≤ c
1

κ+1

6

[
κ+ 1

(κp+ 1)
1
p

] 1
κ+1 (∫

u(k+1)t dx

) 1
t(κ+1)

(3.7)

with c6 = c
1
p

5 . Since u ∈ Dp
(
RN
)
, and hence u ∈ Lp∗ (RN

)
, one can choose κ1 in

(3.7) such that (κ1 + 1)t = p∗, that is κ1 = p∗

t − 1. Then we have

∥uM∥(κ1+1)p∗ ≤ c
1

κ1+1

6

[
κ1 + 1

(κ1p+ 1)
1
p

] 1
κ1+1

∥u∥(κ1+1)t,

for all M > 0. Hence since lim
M→∞

uM (x) = u(x), Fatou’s lemma implies

∥u∥(κ1+1)p∗ ≤ c
1

κ1+1

6

[
κ1 + 1

(κ1p+ 1)
1
p

] 1
κ1+1

∥u∥p∗ .
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This gives u ∈ L(κ1+1)p∗ (RN
)
. By the same argument, one can choose κ2 in (3.7)

such that (κ2 + 1)t = (κ1 + 1) p∗, that is κ2 =
(

p∗

t

)2
− 1 to have

∥u∥(κ2+1)p∗ ≤ c
1

κ2+1

6

[
κ2 + 1

(κ2p+ 1)
1
p

] 1
κ2+1

∥u∥(κ1+1)p∗ .

By iteration, we obtain κn = (p
∗

t )
n − 1 such that

∥u∥(κn+1)p∗ ≤ c
1

κn+1

6

[
κn + 1

(κnp+ 1)
1
p

] 1
κn+1

∥u∥(κn−1+1)p∗ for all n ∈ N.

It follows

∥u∥(κn+1)p∗ ≤ c

∑n
i=1

1
κi+1

6

n∏
i=1

[
κi + 1

(κip+ 1)
1
p

] 1
κi+1

∥u∥p∗ ,

or equivalently

∥u∥(κn+1)p∗ ≤ c

∑n
i=1

1
κi+1

6

n∏
i=1

[ κi + 1

(κip+ 1)
1
p

] 1√
κi+1


1√

κi+1

∥u∥p∗ .

Since[
z + 1

(zp+ 1)
1
p

] 1√
z+1

> 1 for all z > 0 and lim
z→∞

[
z + 1

(zp+ 1)
1
p

] 1√
z+1

= 1,

there exists a constant c7 > 0 independent of n ∈ N such that

∥u∥(κn+1)p∗ ≤ c

∑n
i=1

1
κi+1

6 c

∑n
i=1

1√
κi+1

7 ∥u∥p∗ ,

where

1

κi + 1
=

(
t

p∗

)i

,
1√

κi + 1
=

(√
t

p∗

)i

,
t

p∗
<

√
t

p∗
< 1.

Hence, there exists a constant c8 > 0 independent of n ∈ N such that

∥u∥(κn+1)p∗ ≤ c8∥u∥p∗ (3.8)

for all n ∈ N. Passing to the limit as n goes to infinity we get

∥u∥∞ ≤ c8∥u∥p∗ . (3.9)

Therefore, due to (3.8) and (3.9), we deduce that

u ∈ Lσ
(
RN
)

for all p∗ ≤ σ ≤ ∞.

Finally, since q∗ < p∗ we have u ∈ Lσ
(
RN
)
for all q∗ ≤ σ ≤ ∞.

The positivity of u follows from the weak Harnack type inequality proved in
Trudinger [18]. Indeed, let us remark for the reader’s convenience that since u ∈
L∞(RN ) and u ≥ 0 in a cube K = K(3ρ) ⊂ RN , then using Theorem 1.1 of [18],
there exists a constant C = C(ρ) such that

max
K(ρ)

u(x) ≤ C min
K(ρ)

u(x),
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where K(ρ) is the cube of side ρ centered at 0 whose sides are parallel to the
coordinate axes. Suppose that there is a subset E of RN such that u ≡ 0 a.e. in
E with |E|N ̸= 0, where | · |N is the Lebesgue measure in RN . Then, since E =⋃

ρ∈Q(E ∩K(ρ)) and |E|N ̸= 0, there exists ρ′ with |E ∩K(ρ′)|N ̸= 0. Hence

0 ≤ max
K(ρ ′)

u(x) ≤ C min
K(ρ ′)

u(x) ≤ C min
E∩K(ρ ′)

u(x) = 0.

This implies that u ≡ 0 a.e. in K(ρ ′). A similar argument shows that u ≡ 0 a.e. in
K(ρ) for all ρ > ρ′. Thus u ≡ 0 a.e. in RN , which leads to a contradiction. Therefore
u > 0 in RN .

Finally, since huq ∈ L
N

p−ε (RN ), 0 < ε < 1, then the decay of u follows directly
from Theorem 1 of Serrin [16]. This finished the proof of Theorem 3.2. □

Remark 3.3. Suppose that the assumptions of Theorem 3.1 are satisfied. Then
u ∈ C1,α(BR(0)) for any R > 0 with some α = α(R) ∈ (0, 1). The proof follows
immediately from the regularity results of Tolksdorf [17].

Remark 3.4. One can prove similar results as in Theorems 3.1 and 3.2 for problem
(3.1) under the more general assumptions

0 ≤ f(x, t) ≤
I∑

i=1

mi(x)t
αi+βi+1,

for a.a.x ∈ RN and for all t ≥ 0, where mi are positive functions such that mi(x) ∈
Lsi(RN ), si ∈ [ri, ri + δ] with ri =

1

1−(
αi+1

p∗ +
βi+1

q∗ )
, αi+1

p∗ + βi+1
q∗ < 1, αi, βi > 0,

i = 1, .., I and some δ ∈ (0, 1).
The decay and the positivity of u can be obtained by the above processus if we suppose
moreover that αi ≥ p− 1 and βi ≥ q − 1, i = 1, .., I.
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