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ABSTRACT. The purpose of this paper is to study the existence and nonex-
istence of nontrivial solutions for quasilinear elliptic problems driven by the
nonhomogeneous (p, ¢)-Laplace operator —A, — A, depending on two param-
eters in bounded and unbounded domains. First, using variational methods,
we prove the existence and nonexistence of positive solutions for a class of sub-
linear (p, q)-Laplacian problems with two parameters. Second, using a non-
standard variational approach, we prove the existence of bounded solutions
for nonlinear problems of (p + ¢) sublinear type involving the (p, ¢)-Laplace
operator with two parameters in unbounded domains.

1. INTRODUCTION

In this paper, we are concerned with the study of two nonlinear problems in-
volving a differential operator of (p, ¢)-Laplacian type with positive parameters of
the form

—Apu — Agu = Af(z,u) + pg(z,u), xe€Q (P)
and
—Apu — pAgu = Af(z,u), xRV, (Py)
where Q@ € RY, N > 2, is either a bounded domain or an unbounded domain,
1 < q<p< +o00, A and p are positive parameters and A,u = div(|Vu|""2Vu)
stands for the classical r-Laplacian for 1 < r < oo.

It should be mentioned that in recent years several studies have been carried out
to investigate related problems and many papers have appeared dealing with equa-
tions driven by the (p, ¢)-Laplacian in both bounded and unbounded domains. We
refer, for example, to the papers of Baldelli-Filippucci [2], Baldelli-Brizi-Filippucci
[3, 4], Bobkov-Tanaka [5, 6, 7], Candito-Marano-Perera [3], Motreanu-Tanaka [14],
see also the references therein. Note that the (p,¢)-Laplacian appears in a wide
range of applications, we mention e.g.,biophysics, plasma physics, reaction-diffusion
equations, and models of elementary particles.

Regarding problem (P;) let us point out that more works have been done in
this direction in the case of nonlinear problems involving the p-Laplacian. Namely,
Maya-Shivaji [13] studied the semilinear case p = 2 and similar results have been
established by Perera [15] and El Manouni-Perera [10] when only the p-Laplacian
operator appears with p > 1 and p # 2 in the cases of scalar equations and systems
of two second order quasilinear equations, respectively.
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As for problem (), we consider different type of problems with two parameters
for the (p,q)-Laplacian in RY. In particular each parameter is on one side of the
quasilinear equation. Here, we do not minimize a Rayleigh-type quotient, but we
use a nonstandard variational approach and show the existence of at least one
solution corresponding to the three positive parameters. Additionally, we establish
some regularity results for the solution obtained in terms of global L*°-estimates
by constructing an iteration scheme to bound the maximal norm of the solution
following Moser’s iteration technique, see, for example, the monograph of Drabek-
Kufner-Nicolosi [9].

2. BOUNDED CASE
Let © ¢ RY,N > 2, be a bounded domain in RY with smooth boundary 99.
We consider the following Dirichlet problem
—Apu— Agu = Af(x,u) + pg(x, uw) in €,
u=20 on 0,
where 1 < ¢ < p < o0, A > 0, u > 0, Ayu = div(|]Vu|""2Vu) stands for the

usual r-Laplacian with 1 < r < oo and f,g: Q x [0,00) — R are assumed to be
Carathéodory functions having subcritical growth of the form

|f(z,t)] < CitP™, gz, t)| < Coti™!  for all (z,t), (2.2)
with positive constants C7,Cy. We define
Jo(IVulP + [Vu|?) dz

(2.1)

)\ = 9
' uew\ (o) Jo lulp da (2:3)
_ Jo(IVul? + |Vul|?) dz '
uew\{o} Jo lul9 da ’

where W = WO1 P(Q) which can be equipped with the equivalent norm

ul| = |Vul, = (/Q |Vul? da:) " foralluc WP ().

Remark 2.1. Regarding the definitions of A1 and py in (2.3), since ¢ < p, A1 is
just the first eigenvalue of the p-Laplacian. Indeed, it is clear that A1 is greater than
or equal to the first eigenvalue. Taking u = t¢1, where ¢y is a first eigenfunction
of the p-Laplacian with t > 0, and letting t — oo shows that A is less than or equal
to the first eigenvalue. A similar argument shows that py is the first eigenvalue of
the q-Laplacian.

We start by a nonexistence result for positive solution of problem (2.1).

Theorem 2.2. There exists a, 8 > 0 such that for all A\, u satisfying Ao+ pp < 1,
problem (2.1) has no positive solutions.

Proof. Suppose that (2.1) has a positive solution u € W. Testing the weak formu-
lation of (2.1) by u, using (2.2) and (2.3) gives

/|Vu|pdx—|—/ |Vu\qda:=/\/f(x,u)udm—i—u/g(x,u)udx
Q Q Q Q

gACl/ \u|pdx+uC’2/ luf? dz
Q Q
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< <)\Cl +/AC2) (/ |Vu|pdx+/ |Vu|qu).
A1 0} Q Q

The assertion of the theorem follows. O
The next theorem shows the existence of positive solutions for problem (2.1).

Theorem 2.3. Assume the following conditions:
(F1) there exists 6 > 0 such that

F(z,t) = /Otf(x,T)dT<0, G(z,t) == /otg(m,T)dT<O,

when tP +t9 < §;
(F2) there exists tg > 0 such that F(x,to) > 0 and G(x,tg) > 0 for a.a.x € Q;
(F3) it holds

F(x,t t
lim sup (;’ ) <0 and limsup G(;’ ) <0 wuniformly for a.a.x € Q.

t—o0 t—ro0
Then exists a number w > 0 such that (2.1) has at least two positive solutions for
Aorpu>w.

Proof. We set f(z,t) = g(z,t) = 0 if t < 0 for a.a.x €  and consider the C-
functional ®, ,: W — R given by

@Av#(u):/Q;1)|Vu\pdx+/g$|Vu|quf/Q)\F(:c,u)dxf/QuG(x,u)dw

for all w € W. If u is a critical point of ®, ,, denoting by u~ the negative part of
u, we have

0= () ,(u),u") = / |Vu|P~2Vu - Vu~ dz + / |Vu|92Vu - Vu~ dz
Q Q

A

—/ A (z,u)u™ dx—/,ug(a:,u)u_ dz
Q Q
= Va7 + [Vu~ |3

This shows u > 0. Furthermore, u € L>(Q) N C*(Q) (see, for example, Ho-Kim-
Winkert-Zhang [1 1, Theorem 3.1] and Lieberman [12, Theorem 1.7]), so the posi-
tivity of u now follows from the weak Harnack type inequality proved by Trudinger
[18, Theorem 1.1], that is, either u > 0 or u = 0. Thus, nontrivial critical points of
¢, are positive solutions of (2.1).

By the growth condition (2.2) we get

|F(z,t)] < Cslt|P, |G(z,t)] < Cylt|? for all (z,t) € QA xR, (2.4)
for some positive constants Cs and Cy. By (F3) there is By, > 0 such that

A
Fla,t) < ?,ngAW and G(,t) < ?)%Ith for all [t| > By,. (2.5
By using (2.4) and (2.5), there is a constant Cy , > 0 such that

A
AF(2,1) + pGla,1) < ZHtf7 + %w +Cy, forall (m,¢) QxR (26)
D D
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Hence, since g < p, by applying (2.6) and (2.3), it follows that

1 1 A1 M1 )
i) u2/<Vup+qu—up—uq—C dz,
(W) A p\ | q\ | 3p|| 3p|\ A

1 1 2
> —|VulP + =|Vu|? — —(|VulP +|Vul?) - C )dx
[ GIvar 4 2 19ulr = Z(9ur + [9ulr) - O,
> Al ~ Ol

1
where v = 3 and |-| v is the Lebesgue measure in RY. Hence, ®, , is bounded from

below and coercive. In addition, ®, , is sequentially weakly lower semicontinuous
which implies the existence of a global minimizer u; € WP (2) of @y ,,(u).
Claim 1: There exists w > 0 such that inf @, , <0 for A > w or u > w.
In order to prove this, we take a sufficiently large compact subset €’ of © and
up € Wy (Q) such that ug = to on Q' and 0 < ug < to on Q\ ', where t; is as in
(F2). Then we have

F(JZ,UQ)dl‘Z F(Z‘,to)dx—01|t0|p|Q\Q/|N>O
Q Q

/ Gz, uo) d > / Gla, to) dz — Calto|7]Q\ 2] > 0,
Q o
for |Q\ €|y sufficiently small. This yields

(I)/\,M(UO)

1 1
§/ <|Vuo|p+|Vuo|q> dxf)\/F(x,uo)dxfu/G(x,uo)dx<0
Q \P q Q Q

for A or u large enough. This proves Claim 1.

From Claim 1, choosing A or ;1 > w, we get that ®) ,(u;) < 0= @, ,(0) and so
u1 # 0. Now, let us fix A\, u with A or p > w.

Claim 2: The origin is a strict local minimizer of ® ,.

Let u € WyP(Q). We set Q, = {z € Q: |u(z)[? + |u(z)|? > §}, where § > 0 is
given in (F1). By hypothesis (F1), F(z,u) < 0 and G(z,u) <0 on £\ £,. Then
we have

1 1
Py u(u) = 5||Vu||g + aHVUHZ — )\/Q F(z,u)dz — /\/Q\Q F(z,u)dz

- /,L/Qu G(z,u)dz —,u/Q\Qu G(z,u)dz (2.7)

> 1||u|\7”f)\/ F(:L',u)d:c—u/ G(z,u)dz.
p u Qu

Applying (2.2), Hélder’s inequality and the Sobolev embedding theorem, it follows
that

)\/ F(x,u)das—i—,u/ G(z,u)dx
Q Q’u

u

gACl/ \u|pdx+,u02/ |ul? dz (2.8)

Qo Qo
1-2 1-4

< ACH Q] T IVullp + pColQuly * [[Vullg,
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Np

for some positive constants C] and Cf and where r = if p < N,»r > pif

N q
> N ds=
p ana s N

ifg< N,s>qif ¢g> N. Since ¢ < p and

|uf? + [ul?

1< 5

n Q,,
we obtain

1
[Quly < g/ (Jul? + [ul?) do < C'[Jul?
Qu

for some positive constant C’. Hence |Q,|n — 0 as |jul| = 0 and Claim 2 follows
from (2.7) and (2.8).

Since ®, , is coercive, every Palais-Smale sequence is bounded and hence con-
tains a convergent subsequence. So the mountain pass lemma now gives a critical
point up of ®, ,, at the level

c¢:=inf max &, ,(u) >0,
vl uev([0,1])

where I' = {y € C([0,1], Wy P(Q)) : 7(0) = 0,7(1) = u1} is the class of paths
joining the origin to u;. Therefore we found two positive solutions u;, us such that
Cb)\”u(ul) <0= Cb)\“u(()) < CI))\”LL(UQ).

This completes the proof of the theorem. O

3. UNBOUNDED CASE

In this part we consider the following nonlinear problem in RY
—Apu — pAgu = Af(z,u) inRY, (3.1)

where 1 < ¢ < p < N,N < p+q,\p >0 are two real parameters and f: RY x

[0,00) — R is a Carathéodory function that satisfies the following conditions:
(H1) There exists 6 € (0,1) such that 0 < f(x,t) < m(z)tPT47! for a.a.z € RV
and for all ¢ > 0, where m is a positive function such that m € L" (RN ) N

1
L0 (RY) with r = -—5—
P* q*
(H2) There exists a nonempty open subset  of R and constants &y,d; > 0
such that f(x,t) > 0 for all (x,t) € Q x (dg, d1).
We denote by X the reflexive Banach space D''P (RN ) N D14 (RN ), where for

1<s<N
Dt (RY) = {ue 1 (RY) : Vue 1" (RY)},
is equipped with the norm
lull == llullx = l[ullpre@yy + lull progy)-
By a weak solution of problem (3.1) we mean any u € X such that

/ |Vu|p*2Vu~Vgadx+,u/ |Vu|q*2Vu-Vgadx:)\/ flz,u)pdx  (3.2)
n Rn RN

is satisfied for all ¢ € X.
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Note that r = p+év ~ and the assumptions N < p + ¢ as well as (H1) guarantee

that 7 and both integrals in (3.2) are well-defined, respectively.

Our first result is the following one.

Theorem 3.1. Let 1 < ¢ <p < N with N < p+q and suppose that (H1)—(H2) are
satisfied. Then there exist A\, u > 0 such that problem (3.1) has a positive solution
ueX.

Proof. Let 1 < a < ¢ be fixed and set F(x,t) fo x,7)dr. We consider the
functional J: X \ {0} — R defined by

/ F(z,u)dz
J(u) = RY P ’
(IVally + Valp )([Vullg + IVullg )

which is well defined and bounded. Indeed, in view of (H1), the Sobolev embedding
theorem and since v < p < p* and a < g < ¢*, we get

/RNF(x,u)

q

q*

< alVulllVulg
< a((IVully

E)(IVullg + [IVulld),
for some ¢; > 0. Hence, we have
J(u) <ec¢; forallue X\ {0}.

Let 8 := sup J(u) and choose ¢g € CFF° (RN) such that
0#ueX

supppo CC Q and  sup po(x) > do,
z€RN

where  and dy are given in (H2). Thanks to (H2), it holds F(z,t) > 0 and
G(z,t) > 0 on Q x (dp,00). It follows that § > 8 with 89 = 3.J(pg) > 0. Let
{ugtr>1 C X with uy # 0 for all k € N be a sequence such that

J(ug) =8 as k — +oo.
Since 8 > 8y and J(ur™) > J(uy), one can choose
up >0 and J(ug) > 8y forall ke N.

Then we obtain

So(lIVurlly + I Vurlly ) IV ur g + [Vusllf)

< [ P ds <l V| Vul

R
for all k € N. It follows that [|Vug||, and ||Vug||, are bounded. Hence there exist
constants 0 < A1 < As < oo and 0 < A3z < A4 < 0o such that
A1 S ||Vuk||p S AQ and Ag S ||vuqu S A4 for all £ € N.

Then, due to the reflexivity of X, one can find a subsequence (still denoted by
{ug}r>1) and an element u € X such that

up —u in X and a.e.in RY.
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Then uy, — u in DP (RN) and u — win D9 (RN).

Let now R > 0. Using the Rellich-Kondrachov theorem (see Adams [, p. 144],
p. 144), the embedding D'? (Br) < LP(Bg) is compact, where Br denotes the
ball in RY with center zero and radius R > 0. This implies that

up = u in LP (Bg).

Since RN Ugso Br, we deduce that v > 0 a.e.in RY. By using Hélder’s inequal-
ity, (H1) and (H2), we have for all R > 0 and k € N,

/ ZL‘ uk
|z|>R

=

<c </x|2R m(z)" dfﬂ) ,

where c¢5 is a positive constant independent of R and k. The same holds also for u,
that is

F(z,u)dz| <3 m(z)" dzx T,
|z|>R lz|>R

for some constant c3 > 0 independent of R. Since m € L"(RY), we have

lim m(x)" dz =0,

which implies that for each € > 0 there exists R. > 0 such that

/ F(z,ug)dx / |F(x,u)dx
‘Cvlst |I|2RE

for all £ € N. On the other hand, applying Young’s inequality, for any = € R and
€ (0,00), we have the following estimate

m(z)rte et (r+o)

<e, <e (3.3)

F(x,t) <

r+46 (r+0)
fora.a.x € B, ={x € ]RN : \x| < R.} and for all t € R. Note that (p+q) (r +0)" <
p*, since (r +6)" <1’ < ;- Hence the continuity of the Nemytskij operator implies
/ F(z,ug)de — F(z,u)dz, (3.4)
|z|<R. || <R-

as k — oo and any fixed € > 0. Combining (3.3) and (3.4) we conclude that
/ F(x,ug)de — F(x,u)dz,
RN RN
as k — oo. Hence, since J(uy) > 8y we have

/ F(z,u)dz > 8o(||Vug|[2
RN

> 8o(AS + AY ) (AS + A5 ) > 0

D) IVuklly + ol Vur|7)
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Therefore u # 0in RV,
From the weak lower semicontinuity of the norm in DV?(RY) and in DV4(R"Y),

we obtain
/ F(z,u)dx
8§ =limsup J(ug) < RY

k—voo = liminf (| Vuglly + [ Va2 (I Vurll§ + Vel )

Thus

F(z,u)dz

8§ < RY > o = J(u).
(IIVullg + IVulp )(IVully +[[Vullg )

Consequently, we get J(u) = 8.
Let ¢ be a fixed element in X and consider
&p(e) = lluteplp,  &ole) = llu+eplly.

Due to the fact that u # 0, and the continuity of &, and &, we can find €9 > 0 such
that

lu+eplp, >0 and |lu+eply >0 forallee (—ep,e0).
For € € (—eg,€0), we define the function
n(e) = J(u+ep)
/ F(z,u+ep)da
RN
(IVu+eVelg + [ Vu+eVelp ) (IVu +eVellg + [|Vu +eVel§)

The functions

/F(:r,u—i—ap)dx,

RN

Ki(e) = |[Vu+eVe|s, Ka(e) = |Vu+eVy|?,
Ks(e) = |[Vu+eVe|s, Kie) = Vu+eVeld

are differentiable with respect to ¢ with derivatives

Ki(e) = a|[Vu+eVel[5~? /RN |Vu + eV|P~2(Vu + V) - Vedz,
Ki(e) = p*||Vu +5V<,0H£**” /RN |Vu 4+ eVp|P~2(Vu + V) - Vodz,
K3(e) = af|Vu + eVl g9 /RN |Vu + eVp|?73(Vu + V) - Vodr,
Kj(e) = q¢*||Vu +5Vg0||g**q /RN |Vu 4 V|7 3(Vu + V) - Voda.

Therefore, we have

(K1(e) + Ka(e))(Ks(e) + Ka(e)) /RN f(@,u+ep)pdr

77/(6) = (Kl(E) + K2(5))2(K3(€) + K4(€))2
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(K1(2) + K5(0)) (Ks(e) + Ka(e)) / Flz,u+ep)d
(K1(e) + Ka(e))2(K5(e) + Ka(e))?
(K3(e) + Ki(e))(Ka(e )+K2(5))/ F(
- (Ki1(e) + Ka(e))2(K5(e) + Ka(e))?

Since zero is a global maximum of the function 7, one has 7/(0) = 0. This implies
that

z,u+ep)dr

(1 (0) + K O)(Ka0) + Ks(0) [ flau)ipds
= (K1) + K50))(Ka(0) + K(0)) [ Fau)ds
+(5(0) + Ky 0)(Fa(0) + Ka(0) | | Flau)da.
Therefore,

(K1(0) + I3(0)) (K (0) + K4 (0)) + (K5(0) + K5(0)) (K1 (0) + F2(0))
- HOO OO+ KO [ 16, g
RN

/ F(z,u)dx
RN
Finally, we get

/ |VulP™2Vu - Vpdr + ,u/ |Vu|?2Vu - Vodr = )\/ flz,u)pde,
RN RN RN

for all p € X, where

N (IVully ) (IvVallg )
(@l Vulls~ 5Vl + 19l [ P da
_ (@lIVullg= + ¢ [Vull g ) (IVulg + [Vullf)
(allVullp™ )(IVullg
This completes the proof of Theorem 3.1. ]

The following theorem gives the boundedness, positivity and decay of weak so-
lutions to (3.1).

Theorem 3.2. Under the same assumptions of Theorem 3.1, we have u € L° (]RN)

for any o € [g*,00]. Moreover, u >0 in RN and ‘ llim u(z) = 0.
xT|—0o0

Proof. Let M > 0 and define the cut-off function ups(x) = inf{u(z), M}. Let k > 0
and let ¢ = u';/’[”L be a test function in (3.2). Note that ¢ € X N L>°(RY). This
yields

(kp+1) </ | Vun P de + u/ u | Vupr|? dx) <A mauP Ty g,
RN RN RN

On one hand, we have

I kp+1 (k+1)p” R / +1
- d < VP du,
ACEST (/“M T) S et fu Ve
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for some constant ¢4 > 0. We also have

kp+1 o
TP o 7

= (kp+ 1)/ uhy | Vup|P dz
RN

<(kp+1) </ u';f1’|VuM|pd:1:+/L/ | Vupr|? d:z:> .
RN RN

Hence »
L rpt1 (k+1)p" o —1, kptl
[ d <\ p+q FPTE .. 3.5
cﬁ(/i—l—l)P </RNUM T < RNmu Upy x (3.5)

prpr
L
pr + r+3§

On the other hand, for 0 < § < 1 small enough, let ¢ = Remark that

1
p<t<p"and — + € + b 1. Regarding the second term in the right-hand

r+d6 gt
side of (3.5), using (H1) and Hélder’s inequality, we derive

pt+g—1, rpt+l
o mu uy, - dx

< x muduTOP dg (3.6)

< ([ ar) i ([ ) * ( /uwdx)’f’ |

Combining (3.5) and (3.6), there exists a constant ¢5 > 0 independent of M > 0
and x > 0 such that

ot 1)p* Pr (K + 1)P , T
(/RN UISVI )P d_’L‘) < CSW u(k-l-l)f dz
nil 1
( Jautr dx) 6D

with ¢g = cg. Since u € DP (RN), and hence u € LP” (RN) , one can choose k1 in
(3.7) such that (k1 + 1)t = p*, that is k1 = T — 1. Then we have

that is
k+1

lurtll(wsnyps S €6 | ———=
(k+1)p 6 (kp+ 1)%

1
k11

k1 +1
N1
(kip+1)7
for all M > 0. Hence since N}im up (z) = u(x), Fatou’s lemma implies
—00

1
luntll ey +1)p < 6™ 1l (s 41y

1
K141

K1+ 1

T [[wllp~-
(kip+1)»

1
ull ey +1pe < g2 [
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This gives u € L:1+1P" (RV). By the same argument, one can choose ko in (3.7)

o\ 2
such that (ko + 1)t = (k1 + 1) p*, that is ko = (%) — 1 to have

1
Ko +1

T ] (1 41)p* -
(Rop+1)7 T

Tl ko + 1
[ull ozt 1)p < 62" [

By iteration, we obtain k,, = (%)” — 1 such that

1
kn+1

||u||(nn_1+1)p* for all n € N.

= Kp +1
[l gontr)pr < g | ——
(Knp+1)7

It follows

n 1
i=1 Ry +1

HU’“(NnJrl)P* <

i=1
or equivalently

n 1
i=1 Ry 1

Hu”(nn+l)p* < ¢

i=1

Since
1 1

Ll >1 forall >0 and lim Ll
(zp+1)» (zp+1)»
there exists a constant ¢7 > 0 independent of n € N such that

zZ—00

noo_1 3" %
[l o ype < g e PRy

p*>

1 t\? 1 N\t 7
—— = (=], —==(/=], =<y/=<1
ki +1 p* ki +1 p* p* p*

Hence, there exists a constant cg > 0 independent of n € N such that

where

[ll (e +1)pe < csllullpe (3.8)
for all n € N. Passing to the limit as n goes to infinity we get
p*- (3.9)
Therefore, due to (3.8) and (3.9), we deduce that
ue L’ (]RN) for all p* <o < 0.

[ufloe < csllu

Finally, since ¢* < p* we have u € L7 (]RN) for all ¢* <o < 0.

The positivity of u follows from the weak Harnack type inequality proved in
Trudinger [18]. Indeed, let us remark for the reader’s convenience that since u €
L*®(RY) and u > 0 in a cube K = K(3p) C R¥, then using Theorem 1.1 of [15],
there exists a constant C' = C(p) such that

maxu(z) < C min u(z),
K(p) K(p)
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where K(p) is the cube of side p centered at 0 whose sides are parallel to the
coordinate axes. Suppose that there is a subset £ of R such that v = 0 a.e.in
E with |E|y # 0, where | - |x is the Lebesgue measure in RY. Then, since F =
U,eq(ENK(p)) and [E|x # 0, there exists p’ with [E'N K(p")|n # 0. Hence
0 < max u(z) < C min u(z) <C min u(x)=0.
K(p') K(p') ENK(p')

This implies that u = 0 a.e.in K(p’). A similar argument shows that u = 0 a.e.in
K (p) for all p > p'. Thus v = 0 a.e. in R, which leads to a contradiction. Therefore
u>0in RV,

Finally, since huf € LTJL(RN), 0 < & < 1, then the decay of u follows directly
from Theorem 1 of Serrin [16]. This finished the proof of Theorem 3.2. O

Remark 3.3. Suppose that the assumptions of Theorem 3.1 are satisfied. Then
u € CH*(Bg(0)) for any R > 0 with some a = a(R) € (0,1). The proof follows
immediately from the reqularity results of Tolksdorf [17].

Remark 3.4. One can prove similar results as in Theorems 3.1 and 3.2 for problem
(3.1) under the more general assumptions

I
0< fla,t) <Y my(a)e Pt

i=1
for a.a.x € RN and for allt > 0, where m; are positive functions such that m;(x) €
Ls(RN), s; € [ri,ri + 6] with r; = 17(%7“1#%1)7 et + B’;fl <1, a;, 8; >0,

¥ Tar
i=1,..,I and some § € (0,1).
The decay and the positivity of u can be obtained by the above processus if we suppose
moreover that a; >p—1and B; > q—1,i=1,..,1.
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