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Abstract. This chapter represents a survey on the Fuč́ık spectrum of the

negative p-Laplacian with different boundary conditions (Dirichlet, Neumann,
Steklov, and Robin). The close relationship between the Fuč́ık spectrum and

the ordinary spectrum is briefly discussed. It is also pointed out that for every

boundary condition there exists a first nontrivial curve C in the Fuč́ık spectrum
which has important properties such as Lipschitz continuity, being decreasing

and a certain asymptotic behavior depending on the boundary condition. As

a consequence, one obtains a variational characterization of the second eigen-
value λ2 of the negative p-Laplacian with the corresponding boundary condi-

tion. The applicability of the abstract results is illustrated to elliptic boundary
value problems with jumping nonlinearities.

1. Introduction

Given a bounded domain Ω ⊂ RN , let T be a selfadjoint linear operator on
L2(Ω) with compact resolvent and eigenvalues

0 < λ0 < λ1 < . . . < λk < . . . .

The so-called Fuč́ık spectrum1 Σ of T is defined as the set of all pairs (a, b) ∈ R2

such that the equation

Tu = au+ − bu−

has a nontrivial solution. Here we denoted u+ = max(u, 0) (the positive part of u)
and u− = max(−u, 0) (the negative part of u). Fuč́ık [20] and Dancer [15] were the
first authors who recognized that the set Σ plays an important part in the study of
semilinear equations of type

Tu = g(x, u),

where g : Ω × R → R is a Carathéodory function with jumping nonlinearities
satisfying

g(x, s)

s
→ a as s→ +∞, g(x, s)

s
→ b as s→ −∞.

Initially, a systematic study of this spectrum was developed by Fuč́ık [21] in the case
of the negative Laplacian in one-dimension, i.e., for N = 1, with periodic boundary
condition. He proved that this spectrum is composed of two families of curves in
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R2 emanating from the points (λk, λk) determined by the eigenvalues λk of the
negative periodic Laplacian in one-dimension. Afterwards, many authors studied
the Fuč́ık spectrum Σ2 for the negative Laplacian −∆ with Dirichlet boundary
condition on a bounded domain Ω ⊂ RN (see [2], [5], [14], [24], [25], [28], [29],
[34], [35], and the references therein). In this respect, we mention that Dancer [15]
proved that the lines R×{λ1} and {λ1}×R are isolated in Σ2, while de Figueiredo
and Gossez [16] constructed a first nontrivial curve in Σ2 passing through (λ2, λ2)
and characterized it variationally. Here λ1 and λ2 respectively denote the first and
second eigenvalue of −∆ with Dirichlet boundary condition. The next step in this
direction was to investigate the Fuč́ık spectrum Σp of the negative p-Laplacian (or
p-Laplace operator) −∆p aiming to extend the results known for −∆. We recall
that −∆p is given by

−∆pu = −div(|∇u|p−2∇u), 1 < p < +∞,
which is a nonlinear operator if p 6= 2. If p = 2, it reduces to the negative Laplacian
−∆. First, Drábek [18] has shown for p 6= 2 and in one-dimension that Σp has
similar properties as in the linear case, i.e., for p = 2.

The aim of this chapter is to give an overview about the Fuč́ık spectrum of the
negative p-Laplacian −∆p with 1 < p < +∞ and different boundary conditions on
the bounded domain Ω in RN .

Let V be a closed subspace of the Sobolev space W 1,p(Ω) such that W 1,p
0 (Ω) ⊆

V ⊆ W 1,p(Ω) and let V ∗ denote the dual space with the duality pairing 〈·, ·〉
between V and V ∗. It is well known that the operator −∆p : V → V ∗ is bounded,
continuous, pseudomonotone, and has the (S+)-property (i.e., from un ⇀ u in V
and lim supn→+∞〈−∆pun, un − u〉 ≤ 0 it follows that un → u in V ). Note that on
W 1,p(Ω) we have

〈−∆pu, v〉 =

∫
Ω

|∇u|p−2∇u · ∇vdx, v ∈W 1,p(Ω).

We refer to [6] for various nonlinear boundary problems involving −∆p.
The Fuč́ık spectrum of −∆p depends strongly on the choice of the boundary

condition related to Ω. Specifically, the set Σp (resp., Θp) is called the Fuč́ık
spectrum of −∆p with homogeneous Dirichlet (resp. Neumann) boundary condition
if for all pairs (a, b) ∈ Σp (resp. Θp) the equation

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω

with the boundary condition

u = 0 on ∂Ω

(
resp.,

∂u

∂ν
= 0 on ∂Ω

)
(1.1)

has a nontrivial weak solution. In (1.1), ∂u/∂ν stands for the conormal derivative
on ∂Ω. If we replace (1.1) by

∂u

∂ν
= −β|u|p−2u on ∂Ω

with fixed β ≥ 0, we speak of the Fuč́ık spectrum of −∆p with Robin boundary

condition denoted by Σ̂p. Finally, we write Σ̃p for the Fuč́ık spectrum of −∆p with
Steklov boundary condition, which is formed by all (a, b) ∈ R2 provided

−∆pu = −|u|p−2u in Ω,
∂u

∂ν
= a(u+)p−1 − b(u−)p−1 on ∂Ω
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is solved nontrivially.
These spectra have intensively been studied in the last years. We will present

in Sects. 2 through 5 some of their basic properties. Namely, it will be shown that
there exists a close relationship between these spectra and the ordinary spectrum
of −∆p subject to different boundary conditions. A fundamental fact is that ev-
ery Fuč́ık spectrum introduced above contains a first nontrivial curve C which is
Lipschitz continuous and decreasing. However, the asymptotic behavior of these
curves is different relative to the imposed boundary condition. Furthermore, we will
indicate some applications of these spectra to certain nonlinear elliptic problems
with jumping nonlinearities. Subtle phenomena can occur due to the interaction
of the involved nonlinearities with these spectra, in particular resonance to spec-
tral elements can appear. We emphasize that these problems and results can be
considered beyond the setting of quasilinear elliptic equations. For instance, the
field of variational inequalities, as those describing obstacle problems, offers a rich
and flexible framework which is highly interesting for its applicability. For different
classes of variational inequalities and their applications, we refer to the volume by
Pardalos, Rassias, and Khan [33].

2. Dirichlet boundary condition

The Fuč́ık spectrum of the negative p-Laplacian −∆p with homogeneous Dirich-
let boundary condition is defined as the set Σp of those (a, b) ∈ R2 such that

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

u = 0 on ∂Ω
(2.1)

has a nontrivial (weak) solution u, which means that u ∈ W 1,p
0 (Ω), u 6≡ 0, and it

satisfies the equation∫
Ω

|∇u|p−2∇u · ∇vdx =

∫
Ω

(a(u+)p−1 − b(u−)p−1)vdx, ∀v ∈W 1,p
0 (Ω).

We note that if a = b = λ, problem (2.1) reduces to

−∆pu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,
(2.2)

which is called the Dirichlet eigenvalue problem with respect to the negative p-
Laplacian −∆p. It is known that the first eigenvalue λ1 of (2.2) is positive, sim-
ple, and its corresponding eigenfunctions have constant sign (see Anane [1] and
Lindqvist [23]). In fact, the spectrum σ(−∆p) of the negative p-Laplacian −∆p as-
sociated to (2.2) includes an unbounded sequence of eigenvalues (λk), k ∈ N, called
the variational eigenvalues, which fulfills

0 < λ1 < λ2 ≤ . . . ≤ λk ≤ . . .→ +∞.

The variational eigenvalues satisfy min-max characterizations.
The Fuč́ık spectrum Σp of the negative p-Laplacian −∆p with homogeneous

Dirichlet boundary condition contains the two lines λ1×R and R×λ1. Additionally,
Σp contains the sequence of points (λk, λk), k ∈ N, as can be easily seen from (2.1)
and (2.2) by writing u = u+ − u−. The Fuč́ık spectrum Σp has been intensively
studied by Cuesta, de Figueiredo, and Gossez [13] in the general case of 1 < p < +∞
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through a variational approach using the mountain-pass theorem. In order to give
a brief overview of their results, let us set for every s ≥ 0,

Js(u) =

∫
Ω

|∇u|pdx− s
∫

Ω

(u+)pdx, u ∈W 1,p
0 (Ω).

The function Js is of class C1 on W 1,p
0 (Ω). Denote J̃s = Js |S , with S given by

S =

{
u ∈W 1,p

0 (Ω) :

∫
Ω

|u|p = 1

}
.

Since S is a C1-submanifold of W 1,p
0 (Ω), it follows that J̃s is of class C1 on S in

the sense of manifolds. Then the curve s ∈ R+ 7→ (s + c(s), c(s)) ∈ R2 described
by the min-max values

c(s) = inf
γ∈Γ

max
u∈γ[−1,+1]

J̃s(u),

where

Γ = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1 and γ(1) = ϕ1}, (2.3)

is contained in Σp (see [13, Theorem 2.10]). In (2.3), ϕ1 denotes the eigenfunction
of (2.2) corresponding to λ1 satisfying ϕ1 > 0 in Ω and ‖ϕ1‖p = 1. Taking into
account that Σp is symmetric with respect to the diagonal of the plane, it turns
out that the curve

C := {(s+ c(s), c(s)), (c(s), s+ c(s)) : s ≥ 0} (2.4)

is contained in Σp. It is shown in [13, Theorem 3.1] that C given in (2.4) is indeed
the first nontrivial curve in Σp, which means that the first point in Σp belonging to
the parallel to the diagonal drawn through a point of (R+×{λ1})×({λ1}×R) must
be on C (see Fig. 1). As a consequence, we infer that the curve C passes through
(λ2, λ2). In conjunction with the description of C in (2.4) and the min-max formula
for c(s), this yields that λ2 can be variationally characterized as follows

λ2 = inf
γ∈Γ

max
u∈γ[−1,+1]

∫
Ω

|∇u|pdx, (2.5)

with Γ introduced in (2.3). Moreover, the curve C in (2.4) is Lipschitz continuous
and decreasing as shown in [13, Proposition 4.1]. Finally, we mention that the limit
of c(s) as s → +∞ is equal to the first eigenvalue λ1 of (2.2), which is proven in
[13, Proposition 4.4].

The work of Cuesta, de Figueiredo, and Gossez [13] was the first paper that gave
a complete study of the beginning of the Fuč́ık spectrum of −∆p with homogeneous
Dirichlet boundary condition and their variational approach was the starting point
for investigating the Fuč́ık spectrum under other boundary conditions (Neumann,
Steklov, Robin, see the sections below). The knowledge of the properties of Σp,
especially the existence of the first nontrivial curve C and its representation, has
demonstrated to be very useful in obtaining multiple solutions results for elliptic
equations involving the negative p-Laplacian −∆p and jumping nonlinearities.

In order to illustrate the applicability of the Fuč́ık spectrum Σp, we consider the
following equation with homogeneous Dirichlet boundary condition

−∆pu = a(u+)p−1 − b(u−)p−1 + g(x, u) in Ω, (2.6)
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where g : Ω× R→ R is a Carathéodory function satisfying

lim
t→0

g(x, t)

|t|p−1
= 0 uniformly for a.a. x ∈ Ω.

In Carl and Perera [12], it is proven that problem (2.6) has at least three nontrivial
solutions provided the point (a, b) ∈ R2 lies above the first nontrivial curve C
in Σp constructed in (2.4). Moreover, a complete sign information for the three
solutions is available: two solutions have opposite constant sign and the third one
is sign-changing (nodal solution). This information is obtained by means of the
method of sub-supersolution whose application to problem (2.6) strongly relies on
the hypothesis that the point (a, b) ∈ R2 is situated above the first nontrivial curve
C in Σp. The following graphic marks the position of the point (a, b) ∈ R2 entering
(2.6) and demonstrates the qualitative behavior of the curve C.
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Figure 1. The first nontrivial curve C of the Fuč́ık spectrum of the
negative p-Laplacian with Dirichlet boundary condition. Problem
(2.6) has multiple solutions if the pair (a, b) is above the curve C.

Multiple solutions results concerning problems of type (2.6) and using the rep-
resentation of the first nontrivial curve C, in particular the characterization of the
second eigenvalue λ2 of −∆p on W 1,p

0 (Ω) as stated in (2.5), can be found in nu-
merous publications; see, for example, [7], [10], [30]. We also refer to versions of
such results in the case of nonsmooth potential associated to (2.6) (see, e.g., [8],
[9], [11]).

3. Neumann boundary condition

In this section, we give a brief overview of the Fuč́ık spectrum of the negative
p-Laplacian −∆p with Neumann boundary condition. In order to avoid misunder-
standings, we point out that a Neumann boundary condition stands in this context
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for a homogeneous Neumann condition. Inhomogeneous Neumann boundary con-
ditions are treated in Section 4 (Steklov boundary condition) and Section 5 (Robin
boundary condition). Let us first give the relevant definition of this spectrum.
The Fuč́ık spectrum of −∆p with Neumann boundary condition, denoted by Θp,
consists of all pairs (a, b) ∈ R2 such that

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

∂u

∂ν
= 0 on ∂Ω,

(3.1)

is solved nontrivially, meaning that u ∈W 1,p(Ω), u 6≡ 0, and verifies the equality∫
Ω

|∇u|p−2∇u · ∇vdx =

∫
Ω

(a(u+)p−1 − b(u−)p−1)vdx, ∀v ∈W 1,p(Ω).

In (3.1), ∂u/∂ν denotes the conormal derivative, that is ∂u/∂ν = |∇u|p−2∇u · ν,
where ν is the unit outward normal to ∂Ω. Problem (3.1) is a special case of the
Robin Fuč́ık spectrum that will be introduced in Section 5. Clearly, in case where
a = b = λ, problem (3.1) becomes the Neumann eigenvalue problem of the negative
p-Laplacian given by

−∆pu = λ|u|p−2u in Ω,

∂u

∂ν
= 0 on ∂Ω.

(3.2)

As proved in [22], the first eigenvalue λ1 = 0 of (3.2) is simple with the correspond-
ing eigenspace R, so all eigenfunctions associated to λ1 do not change sign in Ω,
which does not happen for the higher order eigenvalues. It is easily seen that Θp

contains in particular (0, 0), (λ2, λ2) (λ2 is the second eigenvalue of (3.2)) and the

two lines 0 × R and R × 0. The nontrivial part of Θp is denoted by Θ̃p, that is

Θ̃p = Θp \ ((0× R) ∪ (R× 0)), which is obviously contained in R+ × R+.
The basic paper dealing with the Fuč́ık spectrum of the negative Neumann p-

Laplacian is due to Arias, Campos, and Gossez [4]. The construction of a first

nontrivial curve in Θ̃p can be done similarly to the Dirichlet Fuč́ık spectrum. To
this end, for every s ≥ 0, let Js : W 1,p(Ω)→ R be the functional given by

Js(u) =

∫
Ω

|∇u|pdx− s
∫

Ω

(u+)pdx

and let J̃s be its restriction to

S =

{
u ∈W 1,p(Ω) :

∫
Ω

|u|p = 1

}
.

Notice that S is a C1-submanifold of W 1,p(Ω), so J̃s is of class C1 on S in the
sense of manifolds. This enables us to consider the notions of critical points and
critical values for the functional J̃s. Then, the first nontrivial curve C of Θp can be
determined as in (2.4), whereas

c(s) = inf
γ∈Γ

max
u∈γ[−1,+1]

J̃s(u),

Γ = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1 and γ(1) = ϕ1}.

Here we have ϕ1 = 1/|Ω|1/p, so ‖ϕ1‖p = 1, with |Ω| denoting the measure of Ω.
Arguing as in the case of the Dirichlet Fuč́ık spectrum Σp, we see that C passes
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through (λ2, λ2) (λ2 denotes the second eigenvalue of (3.2)). Consequently, we get
a variational expression of λ2 as

λ2 = inf
γ∈Γ

max
u∈γ[−1,+1]

∫
Ω

|∇u|pdx,

with Γ introduced above. An important difference between the Dirichlet Fuč́ık
spectrum Σp and the Neumann Fuč́ık spectrum Θp consists in the asymptotic
behavior of the first nontrivial curve C. In the Neumann case, to describe the
asymptotic properties of the curve C it is required to consider the situations p ≤ N
and p > N separately. In [4, Theorem 2.3 and Theorem 2.6], it is shown that

lim
s→∞

c(s) =

{
λ1 = 0 if p ≤ N
λ if p > N,

(3.3)

where

λ = inf

{∫
Ω

|∇u|pdx : u ∈W 1,p(Ω), ‖u‖Lp(Ω) = 1, u vanishes somewhere in Ω

}
.

The definition of λ is meaningful because for p > N the elements u ∈W 1,p(Ω) are
continuous functions on Ω.

An extension of the previous results to the Fuč́ık spectrum of the negative Neu-
mann p-Laplacian with weights has been achieved by Arias, Campos, Cuesta, and
Gossez [3]. Therein, for the weights given by the measurable functions m(x) and
n(x) on Ω, the authors consider the set Σ of all pairs (a, b) ∈ R2 such that

−∆pu = am(x)(u+)p−1 − bn(x)(u−)p−1 in Ω,

∂u

∂ν
= 0 on ∂Ω,

has a nontrivial solution. Under suitable assumptions on the data it is shown that
Σ contains a first nontrivial curve.

Recently, Motreanu-Tanaka [31] used the results presented in the first part of
this section to study quasilinear elliptic equations of the form

−div A(x,∇u) = f(x, u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(3.4)

where, in the principal part of the equation, one has an operator A ∈ C0(Ω ×
RN ,RN ) ∩ C1(Ω× (RN \ {0}),RN ) of the form A(x, y) = a(x, |y|)y, with a(x, t) >
0 for all (x, t) ∈ Ω × (0,+∞), which is strictly monotone with respect to the
second variable and fulfills some further regularity assumptions, while f : Ω ×
R → R is a Carathéodory function having a representation similar to (2.6). They
prove existence results for multiple solutions to equation (3.4), the properties of the
solution set depending on conditions related to the first nontrivial curve C in the
Neumann Fuč́ık spectrum Θp . These results apply in particular to the case of the
Neumann p-Laplacian in (3.4), i.e., when div A(x,∇u) = ∆pu.

4. Steklov boundary condition

Now we focus on the Steklov Fuč́ık spectrum of −∆p which addresses −∆p

with a special nonhomogeneous boundary condition, known as Steklov boundary
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condition. This spectrum is defined as the set Σ̃p of all pairs (a, b) ∈ R2 such that

−∆pu = −|u|p−2u in Ω,

∂u

∂ν
= a(u+)p−1 − b(u−)p−1 on ∂Ω,

(4.1)

has a weak solution u 6≡ 0. Let us recall that u ∈ W 1,p(Ω) is a weak solution of
(4.1) if it satisfies the equality∫

Ω

|∇u|p−2∇u · ∇vdx = −
∫

Ω

|u|p−2uvdx+

∫
∂Ω

(a(u+)p−1 − b(u−)p−1)vdσ

for all v ∈ W 1,p(Ω). Here the notation dσ stands for the (N − 1)-dimensional
surface measure. The name of this spectrum comes from the fact that if a = b = λ,
(4.1) becomes the so-called Steklov eigenvalue problem, namely

−∆pu = −|u|p−2u in Ω,

∂u

∂ν
= λ|u|p−2u on ∂Ω.

(4.2)

The fundamental difference with respect to the Dirichlet and Neumann Fuč́ık spec-
tra is that in the Steklov case a boundary integral is involved, a fact that sub-
stantially modifies the analysis regarding the relevant values a and b. The Steklov
eigenvalue problem (4.2) was first studied by Mart́ınez and Rossi [26] (see also Lê
[22]). They showed that the first eigenvalue is positive, simple and every eigen-
function corresponding to the first eigenvalue does not change sign in Ω. Actu-
ally, we may find an eigenfunction associated to the first eigenvalue λ1 belong-
ing to int(C1(Ω)+), where int(C1(Ω)+) denotes the interior of the positive cone
C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0,∀x ∈ Ω} in the Banach space C1(Ω), which is
nonempty and given by

int(C1(Ω)+) =
{
u ∈ C1(Ω) : u(x) > 0,∀x ∈ Ω

}
.

Furthermore, in [19] it is established that there exists a sequence of eigenvalues λn
of (4.2) such that λn → +∞ as n → +∞. The Steklov Fuč́ık spectrum defined in
(4.1) has been studied by Mart́ınez and Rossi [27]. Their approach is mainly based
on the ideas of Cuesta, de Figueiredo, and Gossez [13]. Precisely, for each s ≥ 0,
one defines a C1 functional Js : W 1,p(Ω)→ R by

Js(u) =

∫
Ω

|∇u|pdx+

∫
Ω

|u|pdx− s
∫
∂Ω

(u+)pdσ.

Restricting Js to

S =

{
u ∈W 1,p(Ω) :

∫
∂Ω

|u|pdσ = 1

}
,

one obtains a C1-functional J̃s on the C1-submanifold S of W 1,p(Ω). Then, the

first nontrivial curve in Σ̃p is expressed as

C = {(s+ c(s), c(s)), (c(s), s+ c(s)) : s ≥ 0},

where

c(s) = inf
γ∈Γ

max
u∈γ[−1,+1]

J̃s(u),

Γ = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1 and γ(1) = ϕ1}
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(cf. [27, Theorem 2.1]), where ϕ1 ∈ int(C1(Ω)+) with ‖ϕ1‖p = 1. In particular, we
derive the following variational characterization of the second eigenvalue λ2 of the
Steklov eigenvalue problem (4.2) which results in

λ2 = inf
γ∈Γ

max
u∈γ[−1,+1]

∫
Ω

(|∇u|p + |u|p) dx. (4.3)

As before, the first nontrivial curve C is Lipschitz continuous and decreasing (cf.
[27, Proposition 4.1]). Similar to the Neumann Fuč́ık spectrum, in order to state
the asymptotic properties of C, which means in fact to determine the limit of c(s)
as s → +∞, it is needed to take into account two cases, p ≤ N and p > N . The
following holds (see [27, Theorem 4.1])

lim
s→∞

c(s) =

{
λ1 if p ≤ N,
λ > λ1 if p > N,

where

λ = inf
u∈L

max
r∈R

‖rϕ1 + u‖pW 1,p(Ω)

‖rϕ1 + u‖pLp(∂Ω)

with

L = {u ∈W 1,p(Ω) : u vanishes somewhere on ∂Ω}.

As an application of the results in [27], consider the following nonlinear elliptic
equation subject to Steklov-type boundary condition with perturbation

−∆pu = f(x, u)− |u|p−2u in Ω,

∂u

∂ν
= a(u+)p−1 − b(u−)p−1 + g(x, u) on ∂Ω,

(4.4)

for Carathéodory functions f : Ω×R→ R and g : ∂Ω×R→ R which are bounded
on bounded sets and satisfy

(A) lim
s→0

f(x, s)

|s|p−1
= 0 uniformly for a.a. x ∈ Ω,

(B) lim
s→0

g(x, s)

|s|p−1
= 0 uniformly for a.a. x ∈ ∂Ω,

(C) lim
|s|→∞

f(x, s)

|s|p−2s
= −∞ uniformly for a.a. x ∈ Ω,

(D) lim
|s|→∞

g(x, s)

|s|p−2s
= −∞ uniformly for a.a. x ∈ ∂Ω.

(E) There exists δf > 0 such that
f(x, s)

|s|p−2s
≥ 0 for all 0 < |s| ≤ δf and for a.a.

x ∈ Ω.
(F) g satisfies the condition

|g(x1, s1)− g(x2, s2)| ≤ L
[
|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω × [−M0,M0], where M0 is a positive
constant and α ∈ (0, 1].

If the point (a, b) is above the first nontrivial curve C in Σ̃p, problem (4.4) possesses
three nontrivial solutions: one solution with positive sign, one solution with negative
sign, and the third one being sign-changing (cf. Winkert [38], see also [36] if a =
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b = λ > λ2 using the representation in (4.3)). An extension of this result for a
nonsmooth problem corresponding to (4.4) can be found in Winkert [37].

5. Robin boundary condition

Finally, we discuss the Fuč́ık spectrum of −∆p with a Robin boundary condition.
To this end, we consider weak solutions u ∈W 1,p(Ω) of the problem

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

∂u

∂ν
= −β|u|p−2u on ∂Ω,

(5.1)

meaning that∫
Ω

|∇u|p−2∇u · ∇vdx+ β

∫
∂Ω

|u|p−2uvdσ =

∫
Ω

(a(u+)p−1 − b(u−)p−1)vdx

for all v ∈ W 1,p(Ω). In the formulation of (5.1), the parameter β is supposed to
be a fixed, nonnegative constant. The Fuč́ık spectrum of the negative p-Laplacian

with Robin boundary condition is defined as the set Σ̂p of all pairs (a, b) ∈ R2 for
which a nontrivial solution u ∈W 1,p(Ω) of (5.1) exists. Clearly, if β = 0, it reduces
to the Fuč́ık spectrum Θp of the negative Neumann p-Laplacian (see Section 3).
As before, the special case a = b = λ leads to

−∆pu = λ|u|p−2u in Ω,

∂u

∂ν
= −β|u|p−2u on ∂Ω,

(5.2)

which is the Robin eigenvalue problem of the negative p-Laplacian.
Problem (5.2) was studied in the important publication of Lê [22] devoted to

the eigenvalue problems for the negative p-Laplacian. In the Robin case he proved
similar results as they hold for the other eigenvalue problems. The first eigenvalue
in (5.2), denoted as usually by λ1, is simple, isolated, and can be variationally
characterized as follows:

λ1 = inf
u∈W 1,p(Ω)

{∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ :

∫
Ω

|u|pdx = 1

}
.

It is also known that the eigenfunctions corresponding to λ1 are of constant sign
and belong to C1,α(Ω) for some 0 < α < 1.

Recently in [32], the authors of the present text investigated the Fuč́ık spectrum
introduced in (5.1) with the aim to complete the picture of the Fuč́ık spectrum
involving the negative p-Laplacian by extending to the case of Robin boundary
condition the information previously known for Dirichlet problem (see Section 2),
Steklov problem (see Section 4), and homogeneous Neumann problem (see Section
3).

The approach in [32] is variational relying on the C1-functional associated to
problem (5.1), which is expressed on W 1,p(Ω) by

J(u) =

∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ −
∫

Ω

(a(u+)p + b(u−)p)dx.

It is clear that the critical points of J are exactly the (weak) solutions of prob-
lem (5.1). In comparison with the corresponding functionals related to the Fuč́ık
spectrum for the Dirichlet and Steklov problems, the functional J exhibits an es-
sential difference because its expression does not incorporate the norm of the space
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W 1,p(Ω), and it is also different from the functional used to treat the Neumann
problem because it has the additional boundary term involving β.

The results in [32] can be summarized as follows. Applying various ideas and

techniques on the pattern of [13], [4], [27], it is shown that Σ̂p contains a first
nontrivial curve, denoted again by C, and expressed as

C = {(s+ c(s), c(s)), (c(s), s+ c(s)) : s ≥ 0},

where c(s) is given by

c(s) = inf
γ∈Γ

max
u∈γ[−1,+1]

J̃s(u),

Γ = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1 and γ(1) = ϕ1},

(see [32, Theorem 3.3]), with ϕ1 standing for the eigenfunction of (5.2) associated
to λ1 which is normalized as ‖ϕ1‖Lp(Ω) = 1 and satisfies ϕ1 > 0 on Ω. In the above

formula of c(s), J̃s is equal to the restriction of the C1-functional Js : W 1,p(Ω)→ R
given by

Js(u) =

∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ − s
∫

Ω

(u+)pdx

to the C1-submanifold

S =

{
u ∈W 1,p(Ω) :

∫
Ω

|u|pdx = 1

}
of W 1,p(Ω). It is shown in [32, Proposition 4.2] that the curve C is Lipschitz con-
tinuous and decreasing. The asymptotic behavior of C requires, as in the Neumann
and Steklov cases, some more considerations. In case p ≤ N , the following holds:

lim
s→+∞

c(s) = λ1

(see [32, Theorem 4.3]). If p > N , one can suppose that β > 0 (the case β = 0 is
included in Section 3, see (3.3)). In this respect, the key idea is to work with an
adequate equivalent norm on the space W 1,p(Ω). So, for β > 0 one introduces the
norm

‖u‖β = ‖∇u‖Lp(Ω) + β‖u‖Lp(∂Ω),

which is an equivalent norm on W 1,p(Ω) (see also Deng [17, Theorem 2.1]). Then
in [32, Theorem 4.4] one obtains that the limit of c(s) as s→ +∞ is

λ = inf
u∈L

max
r∈R

∫
Ω
|∇(rϕ1 + u)|pdx+ β

∫
∂Ω
|rϕ1 + u|pdσ∫

Ω
|rϕ1 + u|pdx

,

where

L = {u ∈W 1,p(Ω) : u vanishes somewhere in Ω, u 6≡ 0}.

Moreover, there holds λ > λ1.
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