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Abstract. In this paper we study strongly singular problems with Dirichlet

boundary condition on bounded domains given by

− div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
=

h(x)

(u+)r
in Ω,

where 1 < p < N , p < q < p∗ = Np
N−p

, 0 ≤ µ(·) ∈ L∞(Ω), 1 < r and

h ∈ L1(Ω) with h(x) > 0 for a.a.x ∈ Ω. Since the exponent r is larger than

one, the corresponding energy functional is not continuous anymore and so the
related Nehari manifold

N =

{
u ∈ W 1,H

0 (Ω): ∥∇u∥pp + ∥∇u∥qq,µ −
∫
Ω
h(x)

(
u+

)1−r
dx = 0

}
is not closed in the Musielak-Orlicz Sobolev space W 1,H

0 (Ω). Instead we are

minimizing the energy functional over the constraint set

M =

{
u ∈ W 1,H

0 (Ω): ∥∇u∥pp + ∥∇u∥qq,µ −
∫
Ω
h(x)

(
u+

)1−r
dx ≥ 0

}
,

which turns out to be closed in W 1,H
0 (Ω) and prove the existence of at least

one weak solution. Our result is even new in the case when the weight function

µ is away from zero.

1. Introduction

In 1991, Lazer-McKenna [13] studied the strongly singular problem

∆u(x) + p(x)u(x)−γ = 0 in Ω, u
∣∣
∂Ω

= 0, (1.1)

where Ω is a bounded domain in RN , N ≥ 1, with a C2+α-boundary for α ∈ (0, 1),
the function p is of class Cα(Ω) and strictly positive in Ω and γ > 0. The authors
proved that there exists a H1

0 -solution of (1.1) if and only if γ < 3. In particular, if
γ > 1, then there is no solution belonging to C1(Ω). Note that in case N = 1, (1.1)
occurs in different kind of problems in fluid mechanics and pseudoplastic flow, see
the works of Nachman-Callegari [17] and Stuart [25]. Crandall-Rabinowitz-Tartar
[5] proved that a solution of (1.1) exists if the domain Ω is of class C3 and there
is no solution in C1(Ω) if γ > 1, see also the work of Gatica-Oliker-Waltman [9] in
case Ω is the open unit ball in RN .

In 2010 Boccardo-Orsina [1] proved existence, regularity and nonexistence results
for problems of type

∆u =
f(x)

uγ
in Ω, u

∣∣
∂Ω

= 0, (1.2)
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where γ > 0 and f is a nonnegative function belonging to certain Lebesgue spaces.
The authors showed several existence results for problem (1.2) even in the cases
γ = 1 and γ > 1. We also refer to the results of Sun-Wu-Long [23] and Yang [27]
in the semilinear case but for γ < 1.

An extension of the classical existence result of Lazer-McKenna [13] has been
done by Sun-Zhang [24] (see also Sun [22]) who considered the problem

−∆u =
h(x)

up
in Ω, u

∣∣
∂Ω

= 0, (1.3)

where Ω ⊆ RN is a bounded regular domain with N ≥ 3, p > 1 and h is a positive
L1-function. It is shown that problem (1.3) admits a unique H1

0 -solution if and
only if there exists u0 ∈ H1

0 (Ω) such that∫
Ω

h(x)|u0|1−p dx < +∞.

A similar treatment for Kirchhoff problems has been used by Li [14].
Motivated by the works in [14] and [24], in this paper we are going to study the

following strongly singular problem

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
=

h(x)

(u+)
r in Ω, u = 0 on ∂Ω, (1.4)

where Ω ⊆ RN is a bounded domain with Lipschitz boundary ∂Ω, u+ = max(u, 0)
and the operator involved is the so-called double phase operator. In addition, we
suppose the following assumptions on the data:

(H1) 1 < p < N , p < q < p∗ = Np
N−p and 0 ≤ µ(·) ∈ L∞(Ω);

(H2) 1 < r and h ∈ L1(Ω) with h(x) > 0 for a.a.x ∈ Ω.

We call a function u ∈W 1,H
0 (Ω) a weak solution of problem (1.4) if∫

Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇φdx =

∫
Ω

h(x)u−rφdx

is satisfied for all φ ∈W 1,H
0 (Ω) provided all the integrals converge.

Our main result is the following one.

Theorem 1.1. Let hypotheses (H1)–(H2) be satisfied and assume that there exists

u0 ∈W 1,H
0 (Ω) such that ∫

Ω

h(x)
(
u+0

)r−1
dx < +∞.

Then, problem (1.4) admits at least one positive solution.

The difficulties in the proof of Theorem 1.1 lie in the fact that the exponent r
is larger than one, so we have a strongly singular problem. To be more precise,
due to this fact, the related energy functional is not continuous anymore since the
function

u 7→
∫
Ω

h(x)
(
u+

)1−r
dx

is not continuous on W 1,H
0 (Ω). This implies, in particular, that the related Nehari

manifold to problem (1.4) given by

N =

{
u ∈W 1,H

0 (Ω): ∥∇u∥pp + ∥∇u∥qq,µ −
∫
Ω

h(x)
(
u+

)1−r
dx = 0

}
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is not a closed set in the Musielak-Orlicz Sobolev space W 1,H
0 (Ω) as it is the case

when r ∈ (0, 1). Indeed, if r ∈ (0, 1), a standard proceeding is the splitting of the
Nehari manifold into three disjoint parts and minimizing the energy functional over
two of them to get two positive solutions with different energy sign, see, for example,
the papers of Chen-Kuo-Wu [3] for degenerate Kirchhoff Laplacian problems with
sign-changing weight, Fiscella-Mishra [7] for fractional Kirchhoff problems, Kumar-
Rădulescu-Sreenadh [12] for critical (p, q)-equations, Papageorgiou-Repovš-Vetro
[19] for weighted (p, q)-Laplacian, Liu-Dai-Papageorgiou-Winkert [16] for double
phase problems and Tang-Chen [26] for ground state solutions of Schrödinger type,
see also the references therein.

As already mentioned, this treatment is not possible in our case due to the
appearance of the strongly singular term. Instead of this, we consider the constraint
set

M =

{
u ∈W 1,H

0 (Ω): ∥∇u∥pp + ∥∇u∥qq,µ −
∫
Ω

h(x)
(
u+

)1−r
dx ≥ 0

}
,

which is a closed set in W 1,H
0 (Ω), see Lemma 3.2. The idea is to minimize the

corresponding energy functional of problem (1.4) over the constraint set M to get
a positive solution. This is done by using Ekeland’s Variational Principle to get

a sequence with limit u0 ∈ W 1,H
0 (Ω) and this limit turns out to be an element

of the Nehari manifold N (see Proposition 3.4) which contains all nontrivial weak
solutions of problem (1.4).

The main arguments we use here are strongly influenced by Sun-Zhang [24],
however, some technical difficulties arrise. For example, since we are dealing with a

non-homogeneous operator, for each u ∈ W 1,H
0 (Ω) such that

∫
Ω
h(x)(u+)

1−r
dx <

+∞, we cannot explicitly express tu > 0 in terms of u, see Lemma 3.1. This
complicates the proofs of some estimates involving this number, especially some
crucial estimates in Proposition 3.4.

As far as we know our treatment has not been used before for double phase
problems and also not for (p, q)-problems. In general, there are only few papers
for strongly singular problems in the context of nonlinear operators. In order to
mention some of them, we refer to the works of Carvalho-Goncalves-Silva-Santos
[2] for a type of Brézis-Oswald problem to Φ-Laplacian operators with strongly
singular terms, Gambera-Guarnotta [8] for strongly singular convective elliptic
equations in RN driven by a nonhomogeneous operator, Giachetti-Oliva-Petitta [10]
for 1-Laplacian problems with strongly singular right-hand sides and Papageorgiou-
Rădulescu-Zhang [18] for strongly singular (p, q)-problems. The methods used in
these papers are different from our treatment.

This paper is organized as follows. In Section 2 we recall the main properties
of Musielak-Orlicz Sobolev spaces and of the double phase operator. The proof
of Theorem 1.1 is then given in Section 3 by studying the constraint set M and
minimizing the energy functional of (1.4) over M.

2. Preliminaries

In this section we recall the definition of the Musielak-Orlicz Sobolev spaces
and the double phase operator including their properties. For more infor-
mation on these spaces and the operators we refer to Colasuonno-Squassina
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[4], Crespo-Blanco-Gasiński-Harjulehto-Winkert [6], Harjulehto-Hästö [11], Liu-Dai
[15], Papageorgiou-Winkert [20] and Perera-Squassina [21].

To this end, we denote by Ω a bounded domain in RN with N ≥ 2 and with a
Lipschitz boundary ∂Ω. For 1 ≤ r ≤ ∞, Lr(Ω) and Lr(Ω;RN ) represent the usual

Lebesgue spaces equipped with the norm ∥ · ∥r. Moreover, we denote by W 1,r
0 (Ω)

the corresponding Sobolev space endowed with the equivalent norm ∥∇ · ∥r for
r ∈ (1,∞). Next, we introduce the nonlinear function H : Ω × [0,∞) → [0,∞)
given by

H(x, t) = tp + µ(x)tq,

whereby we assume hypothesis (H1). Denoting by M(Ω) the set of all measurable
functions u : Ω → R, the Musielak-Orlicz space LH(Ω) is defined by

LH(Ω) = {u ∈M(Ω): ρ(u) < +∞}
endowed with the norm

∥u∥H = inf
{
λ > 0: ρ

(u
λ

)
≤ 1

}
,

whereas ρ stands for the modular function given as

ρ(u) =

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx.

Furthermore, Lqµ(Ω) stands for the seminormed space

Lqµ(Ω) =

{
u ∈M(Ω):

∫
Ω

µ(x)|u|q dx < +∞
}
,

equipped with the seminorm

∥u∥q,µ =

(∫
Ω

µ(x)|u|q dx
) 1

q

.

Similarly, we can define Lqµ(Ω;RN ). The related Musielak-Orlicz Sobolev space

W 1,H(Ω) defined by

W 1,H(Ω) =
{
u ∈ LH(Ω): |∇u| ∈ LH(Ω)

}
is equipped with the norm

∥u∥1,H = ∥∇u∥H + ∥u∥H.

Finally, the completion of C∞
0 (Ω) in W 1,H(Ω) is denoted by W 1,H

0 (Ω). We know

that LH(Ω), W 1,H(Ω) and W 1,H
0 (Ω) are reflexive Banach spaces and we can equip

the space W 1,H
0 (Ω) with the equivalent norm

∥u∥ = ∥∇u∥H,
see the paper of Crespo-Blanco-Gasiński-Harjulehto-Winkert [6].

The relation between the modular ρ and the norm ∥ · ∥H has been proven in the
paper of Liu-Dai [15].

Proposition 2.1. Let (H1) be satisfied, λ > 0 and y ∈ LH(Ω). Then the following
hold:

(i) If y ̸= 0, then ∥y∥H = λ if and only if ρ( yλ ) = 1;
(ii) ∥y∥H < 1 (resp.> 1, = 1) if and only if ρ(y) < 1 (resp.> 1, = 1);
(iii) If ∥y∥H < 1, then ∥y∥qH ≤ ρ(y) ≤ ∥y∥pH;
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(iv) If ∥y∥H > 1, then ∥y∥pH ≤ ρ(y) ≤ ∥y∥qH;
(v) ∥y∥H → 0 if and only if ρ(y) → 0;
(vi) ∥y∥H → +∞ if and only if ρ(y) → +∞.

Again, from Crespo-Blanco-Gasiński-Harjulehto-Winkert [6, Proposition 2.16]
we know that

W 1,H
0 (Ω) ↪→ Lr(Ω)

is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗).

For s ∈ R, we set s± = max{±s, 0} and for a function u ∈ W 1,H
0 (Ω) we define

u±(·) = u(·)±. Obviously, |u| = u++u− and u = u+−u−. Further, it is known that

u± ∈ W 1,H
0 (Ω) whenever u ∈ W 1,H

0 (Ω). In the following, the Lebesgue measure of
a set K ⊆ RN will be denoted by |K|N .

Let us now summarize the properties of the our operator. To this end, let

A : W 1,H
0 (Ω) →W 1,H

0 (Ω)∗ be defined by

⟨A(u), v⟩ =
∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx

for all u, v ∈W 1,H
0 (Ω) with the duality pairing ⟨ · , · ⟩ ofW 1,H

0 (Ω) and its dual space

W 1,H
0 (Ω)∗. The following proposition can be found in Crespo-Blanco-Gasiński-

Harjulehto-Winkert [6, Theorem 3.3].

Proposition 2.2. Under hypotheses(H1), the operator A is bounded, continuous,
strictly monotone and satisfies the (S+)-property, i.e., if

un ⇀ u in W 1,H
0 (Ω) and lim sup

n→∞
⟨Aun, un − u⟩ ≤ 0

hold, then we have un → u in W 1,H
0 (Ω).

3. Proof of Theorem 1.1

First, we introduce the energy functional I : W 1,H
0 (Ω) → (−∞,+∞] associated

to problem (1.4) given by

I(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq,µ − 1

1− r

∫
Ω

h(x)
(
u+

)1−r
dx.

Next, let us consider the Nehari manifold related to problem (1.4) which is defined
by

N =

{
u ∈W 1,H

0 (Ω): ∥∇u∥pp + ∥∇u∥qq,µ −
∫
Ω

h(x)
(
u+

)1−r
dx = 0

}
=

{
u ∈W 1,H

0 (Ω): φ′
u(1) = 0

}
,

where φu : [0,∞) → R defined by

φu(t) = I(tu) =
tp

p
∥∇u∥pp +

tq

q
∥∇u∥qq,µ − t1−r

1− r

∫
Ω

h(x)
(
u+

)1−r
dx

for any u ∈W 1,H
0 (Ω) such that

∫
Ω
h(x)(u+)

1−r
dx < +∞, is the fibering map.

Since 1 < r, the function u 7→
∫
Ω
h(x)(u+)

1−r
dx is not continuous on W 1,H

0 (Ω)

and so is I. Hence, we cannot prove that N is closed in W 1,H
0 (Ω). This is the
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reason why we deal with another constraint to the problem. More specifically, let
us define

M =

{
u ∈W 1,H

0 (Ω): ∥∇u∥pp + ∥∇u∥qq,µ −
∫
Ω

h(x)
(
u+

)1−r
dx ≥ 0

}
=

{
u ∈W 1,H

0 (Ω): φ′
u(1) ≥ 0

}
.

In the next results, we study some general aspects of N and M.

Lemma 3.1. For each u ∈ W 1,H
0 (Ω), such that

∫
Ω
h(x)(u+)

1−r
dx < +∞, there

exists a unique tu > 0 such that tuu ∈ N . Moreover,

I(tuu) = min
t>0

I(tu).

φu

tu

Proof. Note that φu is C1((0,+∞)) and, for t > 0,

φ′
u(t) = tp−1∥∇u∥pp + tq−1∥∇u∥qq,µ − t−r

∫
Ω

h(x)
(
u+

)1−r
dx.

Obviously, tu ∈ N if and only if φ′
u(t) = 0 which is equivalent to∫

Ω

h(x)
(
u+

)1−r
dx = tp+r−1∥∇u∥pp + tq+r−1∥∇u∥qq,µ. (3.1)

If we define

g(t) := tp+r−1∥∇u∥pp + tq+r−1∥∇u∥qq,µ,
it is easily seen that g(0) = 0 and limt→+∞ g(t) = +∞. Then, there exists tu > 0
such that (3.1) holds true, which is equivalent to tuu ∈ N . On the other hand, we
have

g′(t) = (p+ r − 1)tp+r−2∥∇u∥pp + (q + r − 1)tq+r−2∥∇u∥qq,µ > 0

for all t > 0. Hence, g is strictly increasing and so tu > 0 is unique. □

Next, we show that M is closed in W 1,H
0 (Ω).

Lemma 3.2. M is closed in W 1,H
0 (Ω).

Proof. Let {un}n∈N ⊆ M be such that un → u in W 1,H
0 (Ω). Then, Fatou’s Lemma

implies that, up to a subsequence,

∥∇u∥pp + ∥∇u∥qq,µ −
∫
Ω

h(x)(u+)
1−r

dx
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≥ ∥∇un∥pp + ∥∇un∥qq,µ −
∫
Ω

h(x)
(
u+n

)1−r
dx+ on(1)

≥ 0 + on(1).

Passing to the limit in both sides, we have that u ∈ M. □

Now we prove that the set M is bounded away from the origin.

Lemma 3.3. There exists δ > 0 such that ∥u∥ ≥ δ for all u ∈ M.

Proof. We assume by contradiction that there exists a sequence {un}n∈N ⊆ M such
that

un → 0 in W 1,H
0 (Ω) as n→ +∞.

Then, by the reverse Hölder inequality, it follows(∫
Ω

h(x)
1
r dx

)r
.

(∫
Ω

u+n dx

)1−r

≤
∫
Ω

h(x)
(
u+n

)1−r
dx

≤ ∥∇un∥pp + ∥∇un∥qq,µ
= on(1).

This, in turn, implies that

1

∥u+n ∥r−1
1

= on(1).

Therefore, ∥u+n ∥1 → +∞ as n→ ∞ and so we get a contradiction. □

Note that, if u ∈ M, then

I(u) ≥ 1

q

(
∥∇u∥pp + ∥∇u∥qq,µ

)
− 1

1− r

∫
Ω

h(x)u+
1−r

dx

≥
(
1

q
− 1

1− r

)∫
Ω

h(x)
(
u+

)1−r
dx.

Hence, I is bounded from below on M. Moreover, from Lemma 3.2 we know
that M is closed and so it is a complete metric space. On the other hand, I is a
proper (since by assumption,

∫
Ω
h(x)(u+0 )

q−1 dx < +∞) and a lower semicontinuous
functional over M. Thereby, Ekeland’s Variational Principle implies that there
exists a sequence {un}n∈N ⊆ M such that

lim
n→+∞

I(un) = inf
M
I

and

I(un)− I(v) ≤ 1

n
∥un − v∥ for all v ∈ M. (3.2)

Since I(u) = I(|u|), we can assume, without any loss of generality, that un ≥ 0
a.e. in Ω and for all n ∈ N. Moreover, since r > 1, we have∫

Ω

h(x)u1−rn dx ≤ ∥∇un∥pp + ∥∇un∥qq,µ < +∞,

which implies that un > 0 a.e. in Ω.
Furthermore, by Proposition 2.1 (iii) and (iv), it holds

1

q
min{∥∇un∥pH, ∥∇un∥

q
H} ≤ 1

q
ρ(∇u) = 1

q

(
∥∇un∥pp + ∥∇un∥qq,µ

)
≤ I(un) = inf

M
I + on(1).
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Hence, the sequence {un}n∈N is bounded in W 1,H
0 (Ω). So, we can assume, up to a

subsequence if necessary, that there exists u0 ∈W 1,H
0 (Ω) such that

un ⇀ u0 in W 1,H
0 (Ω),

un → u0 in Ls(Ω) for 1 ≤ s < p∗

un → u0 a.e. in Ω.

Note that, even though we are minimizing the functional I on M, we want to
show that the minimizer actually belongs to N , since all the nontrivial solutions of
(1.4) belong to N . In the next result, we prove this crucial fact.

Proposition 3.4. It holds that u0 ∈ N . Moreover, we have∫
Ω

(
|∇u0|p−2∇u0 + µ(x)|∇u0|q−2∇u0

)
· ∇φdx ≥

∫
Ω

h(x)u−r0 φdx

for all φ ∈W 1,H
0 (Ω) with φ ≥ 0.

Proof. We will split the proof into two cases. In the first one we assume that

{un}n∈N ⊆ M\N . Let us fix φ ∈W 1,H
0 (Ω) with φ ≥ 0 and n ∈ N.

Since un ̸∈ N , we have for t > 0 that∫
Ω

h(x)(un + tφ)1−r dx ≤
∫
Ω

h(x)u1−rn dx < ∥∇un∥pp + ∥∇un∥qq,µ.

Choosing t > 0 sufficiently small, it follows that∫
Ω

h(x)(un + tφ)1−r dx < ∥∇(un + tφ)∥pp + ∥∇(un + tφ)∥qq,µ,

which implies that un + tφ ∈ M. Hence, from (3.2), we obtain

t

n
∥φ∥ ≥ I(un)− I(un + tφ)

=
1

p

(
∥∇un∥pp − ∥∇(un + tφ)∥pp

)
+

1

q

(
∥∇un∥qq,µ − ∥∇(un + tφ)∥qq,µ

)
− 1

1− r

∫
Ω

(
h(x)u1−rn − h(x)(un + tφ)1−r

)
dx.

Dividing the last inequality by t > 0 and calculating the lim inf as t→ 0+, we have

∥φ∥
n

+

∫
Ω

|∇un|p−2∇un · ∇φdx+

∫
Ω

µ(x)|∇un|q−2∇un · ∇φdx

≥ lim inf
t→0+

1

r − 1

∫
Ω

(
h(x)u1−rn − h(x)(un + tφ)1−r

)
t

dx

≥
∫
Ω

h(x)u−rn φdx.

(3.3)

Recall that un ⇀ u0 in W 1,H
0 (Ω). Then the weak lower semicontinuity of the norm

∥∇ · ∥pp and the seminorm ∥∇ · ∥qq,µ along with Fatou’s Lemma imply that

inf
M
I = lim

n→+∞
I(un)

≥ lim inf
n→+∞

(
1

p
∥∇un∥pp +

1

q
∥∇un∥qq,µ

)
− 1

1− r
lim inf
n→+∞

∫
Ω

h(x)u1−rn dx

≥ 1

p
∥∇u0∥pp +

1

q
∥∇u0∥qq,µ − 1

1− r

∫
Ω

h(x)u1−r0 dx.
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This, in turn, implies that
∫
Ω
h(x)u1−r0 dx < +∞. Hence, by Lemma 3.1, there

exists tu0 > 0, such that tu0u0 ∈ N . Hence,

inf
M
I ≥ I(u0) ≥ I(tu0

u0) ≥ inf
N
I ≥ inf

M
I. (3.4)

Hence, all the inequalities in (3.4) turn into equalities. This implies that ρ(un) →
ρ(u), for a subsequence if necessary, and so, since the modular function ρ is

uniformly convex, we get from Proposition 2.1 (v) that un → u0 in W 1,H
0 (Ω).

Moreover, tu0
= 1 and u0 ∈ N .

Now, letting n→ +∞ in (3.3) and using again Fatou’s Lemma, we obtain∫
Ω

|∇u0|p−2∇u0 · ∇φdx+

∫
Ω

µ(x)|∇u0|q−2∇u0 · ∇φdx ≥
∫
Ω

h(x)u−r0 φdx (3.5)

for all φ ∈W 1,H
0 (Ω) with φ ≥ 0. In particular, (3.5) implies that u0 ∈ M.

Now we consider the case in which, up to a subsequence, {un}n∈N ⊆ N . Again,

let us fix φ ∈W 1,H
0 (Ω) with φ ≥ 0 and n ∈ N. For all t ≥ 0, we have∫

Ω

h(x)(un + tφ)1−r dx ≤
∫
Ω

h(x)u1−rn dx < +∞. (3.6)

Then, by Lemma 3.1, there exists a unique fn,φ(t) > 0 such that fn,φ(t)(un+ tφ) ∈
N , that is,

fn,φ(t)
p∥∇(un + tφ)∥pp + fn,φ(t)

q∥∇(un + tφ)∥qq,µ

= fn,φ(t)
1−r

∫
Ω

h(x)(un + tφ)1−r dx.

Hence,
fn,φ(t)

p−1+r∥∇(un + tφ)∥pp + fn,φ(t)
q−1+r∥∇(un + tφ)∥qq,µ

=

∫
Ω

h(x)(un + tφ)1−r dx.
(3.7)

Now, let us consider a sequence tk → 0+ such that there exists the limit

lim
k→+∞

fn,φ(tk)− 1

tk
=: f ′n,φ(0) ∈ [−∞,+∞]. (3.8)

Note that, up to a subsequence, the sequence {fn,φ(tk)}k∈N is bounded in R.
Indeed, otherwise, fn,φ(tk) → +∞ as k → +∞. Then, by (3.7) and Lebesgue’s
Convergence Theorem, it would follow that∫

Ω

h(x)u1−rn dx = +∞,

which is a contradiction to (3.6). Hence there exists a nonnegative L ∈ R such
that, up to a subsequence,

fn,φ(tk) → L as k → +∞.

Then, passing to the limit in (3.7) as tk → 0+ and using Lebesgue’s Convergence
Theorem, we have that∫

Ω

h(x)u1−rn dx = Lp−1+r∥∇un∥pp + Lq−1+r∥∇un∥qq,µ. (3.9)

But since un ∈ N , ∫
Ω

h(x)u1−rn dx = ∥∇un∥pp + ∥∇un∥qq,µ. (3.10)
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Thus, from (3.9) and (3.10), it follows that L = 1. Hence, from now on, the
sequence {tk}k∈N is going to be considered such that (3.8) and also

lim
k→+∞

fn,φ(tk) = 1.

hold. Moreover, we assume, without any loss of generality, that either fn,φ(tk) > 1
for all k ∈ N or fn,φ(tk) < 1 for all k ∈ N. This implies

lim
k→+∞

sgn(fn,φ(tk)− 1) = ±1. (3.11)

Moreover, due to un ∈ N , it follows that fn,φ(0) = 1.
Let us now assume that there exists C > 0 such that

−C ≤ f ′n,φ(0) ≤ C for all n ∈ N. (3.12)

From now on, for the sake of simplicity, we substitute tk for t and by t → 0+, we
mean tk → 0+. Then, from (3.2) and the fact that fn,φ(t)(un + tφ) ∈ M, we have

I(un)− I(fn,φ(t)(un + tφ)) ≤ 1

n
∥fn,φ(t)(un + tφ)− un∥

≤ 1

n
(tfn,φ(t)∥φ∥+ ∥un∥ · |fn,φ(t)− 1|) .

Dividing the last inequality by t > 0 and passing to the limit, we get

lim inf
t→0+

1

t
(I(un)− I(fn,φ(t)(un + tφ))) ≤ 1

n

(
∥φ∥+ ∥un∥ · |f ′n,φ(0)|

)
. (3.13)

On the other hand, it holds

I(un)− I(fn,φ(t)(un + tφ))

=
1

p

(
∥∇un∥pp − fn,φ(t)

p∥∇(un + tφ)∥pp
)

+
1

q

(
∥∇un∥qq,µ − fn,φ(t)

q∥∇(un + tφ)∥qq,µ
)

− 1

1− r

∫
Ω

(
h(x)u1−rn − h(x)fn,φ(t)

1−r(un + tφ)1−r
)
dx

=
1

p

(
∥∇un∥pp − ∥∇(un + tφ)∥pp

)
− (fn,φ(t)

p − 1)
1

p
∥∇(un + tφ)∥pp

+
1

q

(
∥∇un∥qq,µ − ∥∇(un + tφ)∥qq,µ

)
− (fn,φ(t)

q − 1)
1

q
∥∇(un + tφ)∥qq,µ

− 1

1− r

∫
Ω

(
h(x)u1−rn − h(x)(un + tφ)1−r

)
dx

− 1

1− r

(
1− fn,φ(t)

1−r) ∫
Ω

h(x)(un + tφ)1−r dx.
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Dividing by t > 0 and passing to the limit as t→ 0+, from Fatou’s Lemma and the
fact that un ∈ N , we get

lim inf
t→0+

1

t
(I(un)− I(fn,φ(t)(un + tφ)))

≥ −
∫
Ω

(
|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇φdx

− f ′n,φ(0)∥∇un∥pp − f ′n,φ(0)∥∇un∥qq,µ +

∫
Ω

h(x)u−rn φdx

+ f ′n,φ(0)

∫
Ω

h(x)u1−rn dx

= −
∫
Ω

(
|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇φdx

+

∫
Ω

h(x)u−rn φdx.

(3.14)

From (3.13) and (3.14), it follows that

1

n

(
∥φ∥+ ∥un∥ · |f ′n,φ(0)|

)
≥ −

∫
Ω

(
|∇un|p−2∇un + µ(x)|∇un|q−2∇un

)
· ∇φdx

+

∫
Ω

h(x)u−rn φdx.

(3.15)

Since {un}n∈N is bounded in W 1,H
0 (Ω) and from (3.12), calculating the lim inf as

n→ +∞ in (3.15), we have from Fatou’s Lemma that (3.5) holds true. In particular,
u0 ∈ M and we can proceed as in (3.4) and show that, also in this case, tu0 = 1
and u0 ∈ N .

Now, it remains to prove that (3.12) holds. Since un, fn,φ(t)(un + tφ) ∈ N , we
have that

∥∇un∥pp + ∥∇un∥qq,µ =

∫
Ω

h(x)u1−rn dx (3.16)

and
fn,φ(t)

p∥∇(un + tφ)∥pp + fn,φ(t)
q∥∇(un + tφ)∥qq,µ

= fn,φ(t)
1−r

∫
Ω

h(x)(un + tφ)1−r dx.
(3.17)

Subtracting (3.16) from (3.17), we get

0 = (fn,φ(t)
p − 1) ∥∇(un + tφ)∥pp +

(
∥∇(un + tφ)∥pp − ∥∇un∥pp

)
+ (fn,φ(t)

q − 1) ∥∇(un + tφ)∥qq,µ +
(
∥∇(un + tφ)∥qq,µ − ∥∇un∥qq,µ

)
−
(
fn,φ(t)

1−r − 1
) ∫

Ω

h(x)(un + tφ)1−r dx

−
∫
Ω

(
h(x)(un + tφ)1−r − h(x)u1−rn

)
dx

≥ (fn,φ(t)
p − 1) ∥∇(un + tφ)∥pp +

(
∥∇(un + tφ)∥pp − ∥∇un∥pp

)
+ (fn,φ(t)

q − 1) ∥∇(un + tφ)∥qq,µ +
(
∥∇(un + tφ)∥qq,µ − ∥∇un∥qq,µ

)
−
(
fn,φ(t)

1−r − 1
) ∫

Ω

h(x)(un + tφ)1−r dx.

(3.18)
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Then, we divide (3.18) by t > 0 and let t → 0+. This gives, by taking (3.16) into
account, that

0 ≥ pf ′n,φ(0)∥∇un∥pp +
∫
Ω

|∇un|p−2∇un · ∇φdx

+ qf ′n,φ(0)∥∇un∥qq,µ +

∫
Ω

µ(x)|∇un|q−2∇un · ∇φdx

− (1− r)f ′n,φ(0)

∫
Ω

h(x)u1−rn dx

= f ′n,φ(0)

(
p∥∇un∥pp + q∥∇un∥qq,µ − (1− r)

∫
Ω

h(x)u1−rn dx

)
+

∫
Ω

|∇un|p−2∇un · ∇φdx+

∫
Ω

µ(x)|∇un|q−2∇un · ∇φdx

= f ′n,φ(0)
(
p∥∇un∥pp − (1− r)∥∇un∥pp

)
+

∫
Ω

|∇un|p−2∇un · ∇φdx

+ f ′n,φ(0)
(
q∥∇un∥qq,µ − (1− r)∥∇un∥qq,µ

)
+

∫
Ω

µ(x)|∇un|q−2∇un · ∇φdx

≥ (p+ r − 1)∥∇un∥ppf ′n,φ(0) +
∫
Ω

|∇un|p−2∇un · ∇φdx

+ (p+ r − 1)∥∇un∥qq,µf ′n,φ(0) +
∫
Ω

µ(x)|∇un|q−2∇un · ∇φdx.

(3.19)

Then, from Lemma 3.3, Proposition 2.1 (iii) and (iv), (3.19) and Hölder’s inequality,
it follows that

f ′n,φ(0) ≤
−
∫
Ω
|∇un|p−2∇un · ∇φdx−

∫
Ω
µ(x)|∇un|q−2∇un · ∇φdx

(p+ r − 1)(∥∇un∥pp + ∥∇un∥qq,µ)

≤
∥∇un∥p−1

p ∥∇φ∥p + ∥∇un∥q−1
q,µ ∥∇φ∥q,µ

(p+ r − 1)min{δp, δq}
≤ C for all n ∈ N,

where we have used that {un}n∈N ⊆W 1,H
0 (Ω) is bounded.

Now, let us start proving that there exists C > 0 such that

−C ≤ f ′n,φ(0) for all n ∈ N.

From (3.2) we know that

I(un)− I(fn,φ(t)(un + tφ)) ≤ 1

n
∥fn,φ(t)(un + tφ)− un∥

≤ 1

n
(t|fn,φ(t)|∥φ∥+ ∥un∥|fn,φ(t)− 1|) .

(3.20)
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Moreover, since un, fn,φ(t)(un + tφ) ∈ N , it follow that

I(un)− I(fn,φ(t)(un + tφ))

=

(
1

p
− 1

1− r

)(
∥∇un∥pp − ∥∇(un + tφ)∥pp

)
+

(
1

q
− 1

1− r

)(
∥∇un∥qq,µ − ∥∇(un + tφ)∥qq,µ

)
−
(
1

p
− 1

1− r

)
(fn,φ(t)

p − 1) ∥∇(un + tφ)∥pp

−
(
1

q
− 1

1− r

)
(fn,φ(t)

q − 1) ∥∇(un + tφ)∥qq,µ.

(3.21)

Hence, from (3.20) and (3.21), we have that

t

n
∥φ∥|fn,φ(t)|+

(
1

p
− 1

1− r

)(
∥∇(un + tφ)∥pp − ∥∇un∥pp

)
+

(
1

q
− 1

1− r

)(
∥∇(un + tφ)∥qq,µ − ∥∇un∥qq,µ

)
≥ − 1

n
|fn,φ(t)− 1|∥un∥

−
(
1

p
− 1

1− r

)
(fn,φ(t)

p − 1) ∥∇(un + tφ)∥pp

−
(
1

q
− 1

1− r

)
(fn,φ(t)

q − 1) ∥∇(un + tφ)∥qq,µ

≥ (fn,φ(t)− 1)

[
−∥un∥

n
sgn(fn,φ(t)− 1)

−
(
1

p
− 1

1− r

)
fn,φ(t)

p − 1

fn,φ(t)− 1
∥∇(un + tφ)∥pp

−
(
1

p
− 1

1− r

)
fn,φ(t)

q − 1

fn,φ(t)− 1
∥∇(un + tφ)∥qq,µ

]
.

(3.22)

Note that
fn,φ(t)

p − 1

fn,φ(t)− 1
= fn,φ(t)

p−1 + fn,φ(t)
p−2 + ...+ 1 (3.23)

and analogously for q. Then, dividing (3.22) by t > 0, taking the limit as t → 0+

and taking (3.11), (3.23) and Lemma 3.3 as well as Proposition 2.1 (iii), (iv) into
account, we have that((

1

p
− 1

1− r

)
qmin{δp, δq} ± ∥un∥

n

)
f ′n,φ(0) ≥ C.

Hence, we see that for n ∈ N large enough,

f ′n,φ(0) ≥ C

and so we are done. □

Before we can state the proof of Theorem 1.1 we need another auxiliary result.
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Lemma 3.5. If w ∈ N is such that∫
Ω

|∇w|p−2∇w · ∇φdx+

∫
Ω

µ(x)|∇w|q−2∇w · ∇φdx

−
∫
Ω

h(x)(w+)−rφdx ≥ 0

(3.24)

for all φ ∈W 1,H
0 (Ω) with φ ≥ 0, then∫

Ω

|∇w|p−2∇w · ∇φdx+

∫
Ω

µ(x)|∇w|q−2∇w · ∇φdx−
∫
Ω

h(x)(w+)−rφdx = 0

for all φ ∈W 1,H
0 (Ω).

Proof. Let us fix ψ ∈ W 1,H
0 (Ω). For ε > 0, let us consider φ = (w + εψ)+ ∈

W 1,H
0 (Ω). Then, since w ∈ N satisfying (3.24), we have

0 ≤
∫
Ω

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇φdx−

∫
Ω

h(x)(w+)−rφdx

=

∫
{w+εψ≥0}

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇(w + εψ) dx

−
∫
{w+εψ≥0}

h(x)(w+)−r(w + εψ) dx

=

∫
Ω

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇(w + εψ) dx

−
∫
{w+εψ<0}

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇(w + εψ) dx

−
∫
Ω

h(x)(w+)−r(w + εψ) dx+

∫
{w+εψ<0}

h(x)(w+)−r(w + εψ) dx

= ∥∇w∥pp + ∥∇w∥qq,µ −
∫
Ω

h(x)w1−r dx

+ ε

∫
Ω

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇ψ dx− ε

∫
Ω

h(x)(w+)−rψ dx

−
∫
{w+εψ<0}

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇(w + εψ) dx

+

∫
{w+εψ<0}

h(x)(w+)−r(w + εψ) dx

= ε

∫
Ω

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇ψ dx− ε

∫
Ω

h(x)(w+)−rψ dx

−
∫
{w+εψ<0}

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇(w + εψ) dx

+

∫
{w+εψ<0}

h(x)(w+)−r(w + εψ) dx

≤ ε

∫
Ω

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇ψ dx− ε

∫
Ω

h(x)(w+)−rψ dx

− ε

∫
{w+εψ<0}

(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
· ∇ψ dx.
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Dividing the last inequality by ε > 0, letting ε → 0+ and using the fact that
|{w + εψ < 0}|N → 0 as ε→ 0+, we see that∫

Ω

|∇w|p−2∇w ·∇ψ dx+

∫
Ω

µ(x)|∇w|q−2∇w ·∇ψ dx−
∫
Ω

h(x)(w+)−rψ ≥ 0 (3.25)

for all ψ ∈W 1,H
0 (Ω). Substituting ψ by −ψ in (3.25), the result follows. □

Finally, we are able to present a complete proof of Theorem 1.1. Indeed, by
Proposition 3.4, u0 ∈ N and∫

Ω

|∇u0|p−2∇u0 · ∇φdx+

∫
Ω

|∇u0|q−2∇u0 · ∇φdx ≥
∫
Ω

h(x)u−r0 φdx

for all φ ∈W 1,H
0 (Ω) with φ ≥ 0. Hence, by Lemma 3.5, u0 is such that∫

Ω

|∇u0|p−2∇u0 · ∇φdx+

∫
Ω

µ(x)|∇u0|q−2∇u0 · ∇φdx−
∫
Ω

h(x)u−r0 φdx = 0

for all φ ∈W 1,H
0 (Ω). Therefore, u0 is a positive solution to problem (1.4).
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