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Abstract
In this paper, we provide existence and stability results for a new multivalued variational-
hemivariational inequality (MVHVI, for short) involving Brezis pseudomonotone operators
in a reflexive Banach space. First, we use the Moreau-Yosida approximation to introduce
an approximated problem corresponding to (MVHVI), and apply an existence result for
nonlinear equilibrium problems, convergence techniques as well as Sion’sMinimax Theorem
to prove the existence of solutions of (MVHVI). Then, a stability result for (MVHVI) is
obtained via employing Tikhonov regularization and perturbed approach. The theoretical
results established in this paper extend the ones in (J Glob Optim 52:743–756, 2012) and
(J Glob Optim 56:605–622, 2013). Finally, we study a stationary Navier–Stokes equation
with nonmonotone and multivalued constitutive laws for illustrating the validity of the main
theoretical results in this paper.
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1 Introduction

It is well known that the models formulated by equations can be used to solve several
problems, but in many cases, equations are not sufficient to describe complicated natural
phenomena and motion behaviors such as Signorini contact conditions and multivalued con-
stitutive laws. Therefore, the study of problems involving inequalities or inclusions attracts
the attention of scientists because they can accurately describe various comprehensive prob-
lems arising in physical processes, engineering, economics and other fields, see, for examples
the papers of Clason–Valkonen [10] Huang–Fang [17] as well as the famous monographs
of Kinderlehrer–Stampacchia [19] and Naniewicz–Panagiotopoulos [30]. Usually, inequal-
ities are mainly divided into two types of inequalities, namely variational inequalities and
hemivariational inequalities. From a mathematical point of view, variational inequalities
are formulated using convex energy functionals. After the pioneering work of Lions–
Stampacchia [20], the study of variational inequalities became a highly interesting topic
and a large number of excellent research papers have appeared in the past 60 years, covering
both theoretical analysis and practical application in the fields of economics, transporta-
tion and operations research, see, for example, Giannessi–Maugeri [13], Nagurney [29] and
Zeng–Migórski [40]. The notion of hemivariational inequalities was originally introduced by
Panagiotopoulos [31] in the early 1980s for the study of contact problems with nonsmooth
and nonconvex energy superpotentials. Essentially, hemivariational inequalities are based on
the generalized subgradient and the generalized directional derivative in the sense of Clarke,
see, for example, Liu [24], Naniewicz–Panagiotopoulos [30] and Zeng–Migórski–Khan [42].

An inequality problem is called to be a variational–hemivariational inequality, if it
contains both convex functionals and locally Lipschitz functionals that are nonconvex
in general, see Liu–Motreanu [23]. Such inequalities are powerful and useful models to
explore the contact problems with multivalued nonmonotone and monotone constitutive
laws formulated by Clarke’s generalized subdifferentials and convex superpotentials. For
instance, Han [14] applied a perturbed method to introduce a family of singularly per-
turbed problems for an elliptic variational–hemivariational inequality and proved that the
solution of the singularly perturbed problem converges to the solution of the limiting
problem when the singular perturbation parameter tends to zero. Furthermore, Xiao–Liu–
Chen–Huang [38] performed a stability analysis for a variational–hemivariational inequality
while Bartosz–Cheng–Kalita–Yu–Zheng [3] developed a version of Rothe’s method to a
parabolic variational–hemivariational inequality for establishing an existence theorem. A
sub-supersolution approach to a class of parabolic variational–hemivariational inequalities
has been done by Carl [8] in order to obtain existence of weak solutions and extremal
solutions with respect to an appropriate pair of sub-supersolution. For more details on
this topics, we refer to the works of Bonanno–Motreanu–Winkert [5], Bonanno–Winkert
[6], Fang–Han–Migórski–Sofonea [12], Han–Migórski–Sofonea [15], Migórski–Ochal [26],
Migórski–Ochal–Sofonea [27], Liu–Liu–Motreanu [21], Liu–Liu–Wen–Yao–Zeng [22],
Papageorgiou–Rădulescu–Repovš [32, 33], Shillor–Sofonea–Telega [36], Zeng–Migórski
[41] and the references therein.

Recently, Tang–Huang [37] and Costea–Rădulescu [11] considered the following hemi-
variational inequality with multivalued term: Find x ∈ C and x∗ ∈ F(x) such that

〈x∗, y − x〉 + J ◦(T x, T (y − x)) ≥ 〈 f , y − x〉 for all y ∈ C, (1.1)

and proved the existence of solutions of (1.1) under the assumptions that F : X → 2X
∗
is

lower semicontinuous and stably quasimonotone with respect to a set W ⊂ X∗, where X is
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a reflexive and separable Banach space, T : X → V is a linear and compact operator with
V being a reflexive Banach space, J : V → R is a locally Lipschitz function and f ∈ X∗.
However, it is difficult to verify that a multivalued mapping F is lower semicontinuous, and
in many applications F does not even satisfy monotonicity conditions, not even generalized
monotonicity properties. This severely limits the scope of application of the hemivariational
inequalities. In order to fill this gap, this paper is concerned with the study of a variational–
hemivariational inequality involving a multivalued Brezis pseudomonotone operator that is
not lower semicontinuous and monotone.

To be more precise, we consider the following variational–hemivariational inequality
involving a pseudomonotone multivalued mapping in the sense of Brezis:
ProblemP: Find x ∈ C such that

sup
x∗∈F(x)

〈x∗, y − x〉 + ϕ(y) − ϕ(x) + j◦(x̂, ŷ − x̂) ≥ 0 for all y ∈ C,

whereC ⊂ X is a nonempty closed convex set of a real and uniformly convexBanach space X
(without loss of generality, we can suppose that X is reflexive by the Milman-Pettis theorem)
with dual space X∗ being uniformly convex, F : X → 2X

∗
is amultivaluedmapping,ϕ : X →

R is a proper, convex and lower semicontinuous functional, and j◦(Tu, T (v−u)) represents
Clarke’s generalized directional derivative of the locally Lipschitz functional j : V → R

with V being a real reflexive Banach space, and T : X → V is a linear and compact operator
with x̂ := T x for all x ∈ X . The first novelty of this paper is to show that ProblemP is
equivalent to the following inequality: Find x ∈ C and x∗ ∈ F(x) such that

〈x∗, y − x〉 + ϕ(y) − ϕ(x) + j◦(x̂, ŷ − x̂) ≥ 0 for all y ∈ C . (1.2)

Namely, x ∈ C is a solution of ProblemP if and only if it solves inequality (1.2). Then, we
prove the existence of solutions to ProblemP without the assumptions that F is lower semi-
continuous and generalized monotone (for example, stably quasimonotone with respect to a
setW ⊂ X∗). Here, we have to mention that the method and techniques used in this paper are
completely different to the ones of Tang–Huang [37] and Costea–Rădulescu [11], in which
they used the well-known KKM principle due to Ky Fan and the argument of generalized
monotone operators. However, in this paper, we apply the theory of Brezis pseudomonotone
operators, theMoreau-Yosida approximation technique, Sion’sMinimax Theorem and a gen-
eralized existence theorem for nonlinear equilibrium problems for establishing our existence
theorem. Moreover, it should be pointed out that when j ≡ 0, then ProblemP reduces to
the following mixed variational inequality with multivalued operator: Find x ∈ C such that

sup
x∗∈F(x)

〈x∗, y − x〉 + ϕ(y) − ϕ(x) ≥ 0 for all y ∈ C, (1.3)

where inequality (1.3) was recently studied by Bianchi–Kassay–Pini [4] with ϕ ≡ 0. Note
that one cannot obtain similar results as the ones established in [4] for inequality (1.3),
because the presence of ϕ leads to the invalidity of the framework proposed in [4]. On the
other hand, the second contribution of this paper is to explore the stability of ProblemP
via employing the Tikhonov regularization and a perturbed approach. The last goal of this
paper is to apply the established theoretical results to study a Navier–Stokes equation with
nonmonotone and multivalued constitutive law on boundary.

The rest of the paper is organized as follows. In Sect. 2, we recall some definitions and
preliminary materials on multivalued B-pseudomonotone operators and nonsmooth analysis
which are needed in the next sections. In Sect. 3, we focus our attention on the research
of the existence of solutions to ProblemP in which the method is based on the use of the
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Moreau-Yosida approximation approach and the properties of B-pseudomonotone operators.
Section4 is devoted to present a stability result for ProblemP. Finally, in Sect. 5, a stationary
Navier–Stokes equation with nonmonotone and multivalued constitutive laws on boundary is
considered for illustrating the validity of the abstract results established in the present paper.

2 Mathematical background

In this section, we will briefly recall some important notations and necessary preliminary
results which will be used in the next sections for obtaining the main results of the paper.

We start with the following definitions.

Definition 2.1 Let X be a Banach space. A single-valued operator A : X → X∗ is said to be:
(i) monotone, if for all u, v ∈ X , we have 〈Au − Av, u − v〉X∗×X ≥ 0;
(ii) bounded, if A maps bounded sets of X into bounded sets of X∗;
(iii) demicontinuous, if un → u in X implies Aun⇀Au in X∗, where the symbol “⇀" stands

for the weak convergence.

Definition 2.2 We say that the operator A : X → 2X
∗
is pseudomonotone in the sense of

Brezis (B-pseudomonotone, for short) on a nonempty subset D of dom(A) := {x : A(x) �=
∅}, if for every {xn}n∈N ⊆ D such that xn⇀x ∈ D and for every x∗

n ∈ A(xn) with
lim supn→∞〈x∗

n , xn − x〉 ≤ 0, one has that for every y ∈ D, there exists x∗(y) ∈ A(x)
such that 〈x∗(y), x − y〉 ≤ lim infn→∞〈x∗

n , xn − y〉.
The next proposition shows that the sum of two B-pseudomonotone operators is

B-pseudomonotone as well, see Hu-Papageorgiou [16, Proposition 6.15].

Proposition 2.3 If A, B : X → 2X
∗
are B-pseudomonotone operators, then the sum A +

B : X → 2X
∗
is B-pseudomonotone.

Next, let us recall some important definitions and properties concerning nonsmooth
analysis. For more details, we refer to the monograph of Migórski–Ochal–Sofonea [28].

Definition 2.4 Let X be a Banach space and j : X → R be a real-valued function. Then j
is called locally Lipschitz, if for each x ∈ X there exist a neighborhood N (x) and Lx > 0
such that

| j(y) − j(z)| ≤ Lx‖y − z‖X for all y, z ∈ N (x).

The generalized directional derivative (in the sense ofClarke) of the locally Lipschitz function
j at the point x ∈ X in the direction y ∈ X , denoted by j◦(x, y), is defined by

j◦(x, y) = lim sup
z→x,λ↘0

j(z + λy) − j(z)

λ
.

The generalized subdifferential of j (in the sense of Clarke) is defined by

∂ j(x) := {
x∗ ∈ X∗ : 〈x∗, y〉 ≤ j◦(x, y) for all y ∈ X

}
.

Lemma 2.5 Let j : X → R be a locally Lipschitz function. Then, we have

(i) v �→ j◦(x, v) is finite, positively homogeneous and subadditive on X, and satisfies

| j◦(x, v)| ≤ Lx‖v‖X for all v ∈ X ,

where Lx is the Lipschitz constant near x;
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(ii) j◦(x, v) is upper semicontinuous as a function of (x, v), and Lipschitz on X as a function
of v.

(iii) For every v ∈ X , j◦(x, v) = max{〈ξ, v〉X∗×X : ξ ∈ ∂ j(x)}.
The following lemma gives sufficient conditions to determinate that a superposition of the

Clarke subgradient with a bounded linear operator is B-pseudomonotone. The proof can be
found in Bartosz [2, Proposition 5.6].

Lemma 2.6 Let X and V be two reflexive Banach spaces, T : X → V be a linear and
compact operator with T ∗ : V ∗ → X∗ being its adjoint operator. Let j : V → R be a locally
Lipschitz function such that its subdifferential (in the sense of Clarke) satisfies

‖ξ‖V ∗ ≤ c(1 + ‖x‖V ) for all ξ ∈ ∂ j(x) (2.1)

with c > 0. Then, the multivalued operator M : X → 2X
∗
defined by

M(x) = T ∗∂ j(T x) for all x ∈ X

is B-pseudomonotone.

Additionally, we recall the definition of the Moreau envelope for convex functions, see,
for example, Khanh–Nguyen [18, Definition 2.1].

Definition 2.7 Let X be a Banach space, ϕ : X → R∪ {+∞} be a proper, convex and lower
semicontinuous function, and λ > 0. The Moreau envelope of ϕ of parameter λ is defined by

ϕλ(x) = inf
y∈X

(
ϕ(y) + 1

2λ
‖x − y‖2

)
for all x ∈ X .

The next result can be found in the book by Hu-Papageorgiou [16, p. 350].

Proposition 2.8 Let X and X∗ be both locally uniformly convex, and ϕ : X → R ∪ {+∞}
be a proper, convex and lower semicontinuous function, and ϕλ be the Moreau envelope of
ϕ with respect to the parameter λ > 0. Then, the following statements hold:

(i) ϕλ is convex and continuous on X, and its effective domain dom(ϕλ) is the whole space
X;

(ii) For each x ∈ X, there exists a unique point x̃ ∈ X such that

ϕλ(x) = ϕ(x̃) + 1

2λ
‖x − x̃‖2;

(iii) For all x ∈ X, we have ϕλ(x) ≤ ϕ(x) and

ϕλ(x) ↗ ϕ(x) as λ ↘ 0;
(iv) The differential operator ϕ′

λ : X → X∗ of ϕλ is bounded, monotone and demicontinuous.
(v) If xλ⇀x weakly in X, then we have

ϕ(x) ≤ lim inf
λ→0

ϕλ(xλ).

Moreover, we need the following concept of Mosco convergence for the sequence of sets,
see, for example Papageorgiou–Winkert [34].

Definition 2.9 Let X be a Banach space, and S, Sk ⊂ X for all k ∈ N. We say that {Sk}k∈N
converges to S in the Mosco sense, and write Sk

M−→ S, if
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(i) for every y ∈ S, there is a sequence yk ∈ Sk such that yk → y,
(ii) whenever yk ∈ Sk for all k and y is a weak limit point of {yk}k∈N, then y ∈ S.

The following lemma gives several useful properties for the normalized duality mapping,
see, for instance, Aliprantis–Border [1] and Cioranescu [9].

Lemma 2.10 Let X be a normed space and J : X → 2X
∗
be the normalized duality mapping

defined by

J (x) = {
x∗ ∈ X∗ : 〈x∗, x〉 = ‖x∗‖2X∗ = ‖x‖2} .

Then, J has the following properties:

(i) For every x ∈ X , J (x) is nonempty, bounded, closed and convex.
(ii) J is norm-to-weak upper semicontinuous on X, when X is a reflexive Banach space.
(iii) If X is a locally uniformly convex space, then the dual mapping turns out to be single-

valued, coercive, demicontinuous, and B-pseudomonotone.

We end this section to recall the concept of Navier–Stokes type operators and point out
several important properties of such operators.

Definition 2.11 Let V be a reflexive Banach space with its dual space V ∗. An operator
N : V → V ∗ is called a Navier–Stokes type operator if Nv = Av + B[v] for all v ∈ V such
that

H(A): A : V → V ∗ is a linear, continuous, symmetric operator such that

〈Av, v〉 ≥ α‖v‖2V for v ∈ V

with some constant α > 0 which is independent of v ∈ V ;
H(B): B[v] = B(v, v) with B : V × V → V ∗ is a bilinear and continuous operator

satisfying the following conditions:

(a) 〈B(u, v), v〉 = 0 for u, v ∈ V ,
(b) the map B[·] : V → V ∗ is weakly continuous.

The following lemma indicates that a Navier–Stokes type operator is B-pseudomonotone,
see Bianchi–Kassay–Pini [4].

Lemma 2.12 Let N : V → V ∗ be a Navier–Stokes type operator. Then, N is coercive,
bounded and B-pseudomonotone.

3 Existence result

This section deals with the study of the existence of a solution to ProblemP in which our
main method is based on the Moreau-Yosida approximating technique and the following
existence result for equilibrium problems in Hausdorff topological vector spaces, see Brezis-
Nirenberg-Stampacchia [7, Theorem 1].

Theorem 3.1 Let C be a nonempty, closed and convex subset of a Hausdorff topological
vector space E, and f : C × C → R be a bifunction satisfying the following conditions:

(i) f (x, x) ≥ 0 for all x ∈ C;
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(ii) for every x ∈ C, the set {y ∈ C : f (x, y) < 0} is convex;
(iii) for every y ∈ C, the function f (·, y) is upper semicontinuous on the intersection of C

with any finite dimensional subspace Z of E;
(iv) whenever x, y ∈ C, xn ∈ C, xn → x and f (xn, (1− t)x + t y) ≥ 0 for all t ∈ [0, 1] and

for all n, then f (x, y) ≥ 0;
(v) if C is unbounded, there exists a compact subset K of E, and y0 ∈ K ∩ C such that

f (x, y0) < 0 for every x ∈ C\K.

Then, there exists x ∈ C ∩ K such that

f (x, y) ≥ 0 for all y ∈ C .

Beforewe can state ourmain existence theorem,we need the followingBerge-type lemma,
see Proposition 3.3 in Hu-Papageorgiou [16].

Lemma 3.2 Let E1, E2 be Hausdorff topological spaces, u : E1 × E2 → R be an upper
semicontinuous function, and F : E2 → 2E1 be an upper semicontinuousmapwith nonempty
and compact values. Then, the value function v : E2 → R given by v(y) = supx∈F(y)u(x, y)
is upper semicontinuous.

For any fixed λ > 0, we consider the following regularization problem of ProblemP:
ProblemPλ: Find xλ ∈ C such that

sup
x∗
λ∈F(xλ)

〈x∗
λ, y − xλ〉 + ϕλ(y) − ϕλ(xλ) + j◦(x̂λ, ŷ − x̂λ) ≥ 0 for all y ∈ C,

where ϕλ is the Moreau envelope of ϕ with respect to the parameter λ > 0. In the sequel, we
denote by Sλ the solution set of ProblemPλ.

In order to obtain the existence of solution of ProblemP, we shall establish the solvability
of ProblemPλ. Then, passing to the limit as λ → 0, we are going to prove the existence of
solutions of ProblemP.

From Lemma 2.5, it is not difficult to see that a solution of the inequality

sup
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

〈x∗
λ, y − xλ〉 + ϕλ(y) − ϕλ(xλ) ≥ 0 for all y ∈ C (3.1)

is also a solution of ProblemPλ

Following this important fact, it is enough to show the solvability of ProblemPλ by
proving the existence of solutions of problem (3.1).

The existence result for ProblemPλ is stated in the following theorem.

Theorem 3.3 Assume thatϕ : X → R is a proper, convex and lower semicontinuous function,
and C is a nonempty closed convex set in a reflexive Banach space X. Suppose that

(i) F(x) is bounded, closed and convex for every x ∈ C;
(ii) F : X → 2X

∗
satisfies the property that for every finite dimensional subspace Z of X,

for every {xk}k∈N ⊂ C ∩ Z , xk → x, and x∗
k ∈ F(xk), there is a subsequence {x∗

kn
}n∈N

converging in the weak topology to some point in F(x);
(iii) F : X → 2X

∗
is B-pseudomonotone on C;

(iv) There exists y0 ∈ C such that

lim‖x‖→∞
inf x∗∈F(x)+T ∗∂ j(T (x))〈x∗, x − y0〉

‖x‖ = +∞;

(iv) j : V → R is a locally Lipschitz function such that (2.1) holds with some with c > 0;
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(v) T : X → V is a linear and compact operator.

Then, ProblemPλ admits at least one solution. Moreover, for each solution xλ ∈ C, there
exists x∗

λ ∈ F(xλ) + T ∗∂ j(T xλ) such that

〈x∗
λ, y − xλ〉 + 〈∇ϕλ(xλ), y − xλ〉 ≥ 0 for all y ∈ C . (3.2)

Proof By the definition of the convex subgradient, we have

〈∇ϕλ(x), y − x〉 ≤ ϕλ(y) − ϕλ(x) for all y ∈ X .

We observe that a solution of the inequality

sup
x∗∈F(x)+T ∗∂ j(T x)

〈x∗, y − x〉 + 〈∇ϕλ(x), y − x〉 ≥ 0 for all y ∈ X (3.3)

is also a solution of problem (3.1). Therefore, we should focus our attention on proving the
existence of solutions to the problem (3.3) and so we are going to show that all assumptions
of Theorem 3.1 are satisfied for problem (3.3).

To this end, we set GF : X × X → R defined by

GF (x, y) = sup
x∗∈F(x)+T ∗∂ j(T x)

〈x∗, y − x〉 + 〈∇ϕλ(x), y − x〉.

From the definition of GF , it is obvious that GF satisfies conditions (i) and (ii) of Theorem
3.1. Let Z be a finite dimensional space of X . The compactness and continuity of T together
with Lemma 2.6 and hypothesis (v) imply that T ∗ ◦ ∂ j ◦ T is u.s.c.with compact values.
But conditions (i) and (ii) indicate that F has weakly∗ compact values and F is u.s.c. on
C ∩ Z . Then, we can conclude that F + T ∗ ◦ ∂ j ◦ T is upper semicontinuous on C ∩ Z
with nonempty and weakly∗ compact values in X∗. Additionally, the function X∗ × X �
(x∗, x) �→ 〈x∗, y − x〉 is continuous for any y ∈ X . We can apply Lemma 3.2 to conclude
that

x �→ sup
x∗∈F(x)+T ∗∂ j(T x)

〈x∗, y − x〉

is upper semicontinuous onC∩Z for all y ∈ X . The latter and the continuity of x �→ ∇ϕλ(x)
imply that GF (·, y) is upper semicontinuous on C ∩ Z for all y ∈ X . This indicates that (iii)
of Theorem 3.1 is fulfilled.

Next, we shall show that (iv) of Theorem 3.1 is satisfied as well. Let x, y ∈ C, xn ∈
C, xn → x and GF (xn, (1 − t)x + t y) ≥ 0 for all t ∈ [0, 1], that is

inf
t∈[0,1]

(
sup

x∗
n∈F(xn)+T ∗∂ j(T (xn))

〈x∗
n , (1 − t)x + t y − xn〉

+ 〈∇ϕλ(xn), (1 − t)x + t y − xn〉
)

≥ 0.

The weak compactness of F(xn) + T ∗∂ j(T xn) (see assumptions (i) and (v)) reveals that

sup
x∗
n∈F(xn)+T ∗∂ j(T (xn))

〈x∗
n , (1 − t)x + t y − xn〉 = max

x∗
n∈F(xn)+T ∗∂ j(T (xn))

〈x∗
n , (1 − t)x + t y − xn〉.

Let

P(t, x∗
n ) = 〈x∗

n , (1 − t)x + t y − xn〉 + 〈∇ϕλ(xn), (1 − t)x + t y − xn〉.
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Clearly, P(·, x∗
n ) and P(t, ·) are both linear and continuous. Therefore, one could use Sion’s

Minimax Theorem to obtain

inf
t∈[0,1]

(
max

x∗
n∈F(xn)+T ∗∂ j(T (xn ))

〈x∗
n , (1 − t)x + t y − xn〉 + 〈∇ϕλ(xn), (1 − t)x + t y − xn〉

)

= max
x∗
n∈F(xn)+T ∗∂ j(T (xn))

(
inf

t∈[0,1]〈x
∗
n , (1 − t)x + t y − xn〉 + 〈∇ϕλ(xn), (1 − t)x + t y − xn〉

)
≥ 0.

Then, there exists x∗
n ∈ F(xn) + T ∗∂ j(T xn) such that for all t ∈ [0, 1] it holds

〈x∗
n, (1 − t)x + t y − xn〉 + 〈∇ϕλ(xn), (1 − t)x + t y − xn〉 ≥ 0. (3.4)

In particular, for t = 0, we get 〈x∗
n, x − xn〉 + 〈∇ϕλ(xn), x − xn〉 ≥ 0 and thus

lim sup
n→∞

(〈x∗
n, xn − x〉 + 〈∇ϕλ(xn), xn − x〉) ≤ 0.

Whereas, by the boundedness of ∇ϕλ and xn → x , one gets

lim sup
n→∞

〈x∗
n, xn − x〉 ≤ 0.

From Proposition 2.3 and Lemma 2.6, we observe that F+T ∗◦∂ j ◦T is B-pseudomonotone.
Then, for every y ∈ C , there exists x∗(y) ∈ F(x) + T ∗∂ j(T (x)) such that

〈x∗(y), y − x〉 ≥ lim sup
n→∞

〈x∗
n, y − xn〉.

Hence,

〈x∗(y), y − x〉 + 〈∇ϕλ(x), y − x〉 ≥ lim sup
n→∞

〈x∗
n, y − xn〉 + lim sup

n→∞
〈∇ϕλ(xn), y − xn〉

≥ lim sup
n→∞

(〈x∗
n, y − xn〉 + 〈∇ϕλ(xn), y − xn〉

) ≥ 0,

where the last inequality follows from (3.4) for t = 1. This means that GF (x, y) ≥ 0, thus,
(iv) of Theorem 3.1 is also fulfilled.

It remains to check condition (v) of Theorem 3.1. It follows from assumption (iv) that
there exists a function h : R+ → R

+ with h(r) → +∞ as r → +∞ such that

inf
x∗∈F(x)+T ∗∂ j(T (x))

〈x∗, x − y0〉 ≥ h(‖x − y0‖)‖x − y0‖.

Recall that ϕλ is convex, so, for each fixed λ > 0, there exist αλ, βλ ∈ R satisfying ϕλ(x) ≥
αλ + βλ‖x‖. This leads to

GF (x, y0) = sup
x∗∈F(x)+T ∗∂ j(T x)

(〈x∗, y0 − x〉 + 〈∇ϕλ(x), y0 − x〉)

≤ sup
x∗∈F(x)+T ∗∂ j(T (x))

(〈x∗, y0 − x〉 + ϕλ(y0) − ϕλ(x))

≤ −h(‖x − y0‖)‖x − y0‖ + ϕλ(y0) − ϕλ(x)

≤ −h(‖x − y0‖)‖x − y0‖ + ϕλ(y0) − (αλ + βλ‖x‖)
≤ −h(‖x − y0‖)‖x − y0‖ + |βλ|‖x‖ + ϕλ(y0) − αλ.

Then, we have

lim sup
‖x‖→+∞

GF (x, y0)

‖x − y0‖ ≤ lim sup
‖x‖→+∞

( |βλ|‖x‖
‖x − y0‖ − h(‖x − y0‖) + ϕλ(y0) − αλ

‖x − y0‖
)

= −∞.

123



Journal of Global Optimization

We infer that there exists M > ‖y0‖ such that

GF (x, y0) < 0 for all x ∈ C with ‖x‖ > M .

Therefore, GF (x, y0) < 0 for every x ∈ C \ K , where K := BX (0, M) is a weakly compact
set with y0 ∈ K . Applying Theorem 3.1, we find a solution x ∈ C satisfying GF (x, y) ≥ 0
for all y ∈ C . Moreover, it is also a solution of 3.1, so a solution of ProblemPλ.

Let xλ be a solution of ProblemPλ. By Lemma 2.5, we have

inf
y∈C

(

sup
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

〈x∗
λ, y − xλ〉 + 〈∇ϕλ(xλ), y − xλ〉

)

≥ 0.

Using the weak compactness of F(xλ) + T ∗∂ j(T xλ) leads to

inf
y∈C

(

max
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

〈x∗
λ, y − xλ〉 + 〈∇ϕλ(xλ), y − xλ〉

)

≥ 0.

Then, applying again Sion’s Minimax Theorem yields

inf
y∈C max

x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

(〈x∗
λ, y − xλ〉 + 〈∇ϕλ(xλ), y − xλ〉)

= max
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

inf
y∈C(〈x∗

λ, y − xλ〉 + 〈∇ϕλ(xλ), y − xλ〉) ≥ 0.

Thus, we could find x∗
λ ∈ F(xλ) + T ∗∂ j(T xλ) such that

〈x∗
λ, y − xλ〉 + 〈∇ϕλ(xλ), y − xλ〉 ≥ 0 for all y ∈ C .

This completes the proof of the theorem. ��
Remark 3.4 Normally, an element xλ solving inequality ProblemPλ is called to be a weak
solution. But, if there exists x∗

λ ∈ F(xλ) + T ∗∂ j(T xλ) such that inequality (3.2) is satisfied,
then xλ is called to be a strong solution. From the proof of Theorem 3.3, we can see that if
the inequality satisfies the framework of Sion’s Minimax Theorem, then the weak solutions
coincide with the strong solutions.

Proposition 3.5 Suppose that all assumptions of Theorem 3.3 are satisfied and C ⊆ dom(ϕ).
Then, the solution sequence {xλ} is bounded, where xλ is a solution of ProblemPλ for λ > 0.

Proof Suppose by contradiction that there exists an unbounded subsequence of {xλ}. Without
any loss of generality, we may suppose that ‖xλ‖ → +∞ as λ → 0. From the proof of
Theorem 3.3, it is easy to see that xλ ∈ C is a solution of (3.1), namely,

sup
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

〈x∗
λ, y − xλ〉 + ϕλ(y) − ϕλ(xλ) ≥ 0 for all y ∈ C .

Taking y = y0 gives

sup
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

〈x∗
λ, y0 − xλ〉 + ϕλ(y0) − ϕλ(xλ) ≥ 0.

Let us fixed λ0 > 0. Since y0 ∈ dom(ϕ), we can use Proposition 2.8 to infer that for any
λ0 > λ it holds

inf
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

〈x∗
λ, xλ − y0〉 ≤ ϕλ(y0) − ϕλ(xλ)
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≤ ϕ(y0) − ϕλ0(xλ)

≤ ϕ(y0) − (αλ0 + βλ0‖xλ‖),
where αλ0 , βλ0 are two constants which only depend on λ0. Assumption (iv) reveals that

ϕ(y0) − (αλ0 + βλ0‖xλ‖) ≥ inf
x∗
λ∈F(xλ)+T ∗∂ j(T xλ)

〈x∗
λ, xλ − y0〉

≥ h(‖xλ − y0‖)‖xλ − y0‖.
Dividing both sides of the above inequality by ‖xλ − y0‖ simultaneously, and then passing
to the limit as λ → 0, we get a contradiction. Thus, the solution sequence {xλ} is uniformly
bounded. ��

We are now able to use Theorem 3.3 and Proposition 3.5 to obtain the following existence
result for ProblemP.

Theorem 3.6 Suppose that all assumptions of Theorem 3.5 are fulfilled, then every weak
cluster point of {xλ} is a weak solution of ProblemP which is a strong solution of ProblemP
as well.

Proof From Proposition 3.5, we know that {xλ} is bounded. We may assume that x ∈ C
is a weak cluster point of {xλ}, thus, there exists a subsequence, not relabeled, such that
xλ⇀x ∈ C . Keeping in mind that xλ is a strong solution of (3.1) (see Theorem 3.3 and
Remark 3.4), there exists x∗

λ ∈ F(xλ) + T ∗∂ j(T xλ) such that

〈x∗
λ, y − xλ〉 + ϕλ(y) − ϕλ(xλ) ≥ 0 for all y ∈ C . (3.5)

Putting y = x in (3.5), one has

〈x∗
λ, x − xλ〉 + ϕλ(x) − ϕλ(xλ) ≥ 0.

Hence

lim sup
λ→0

〈x∗
λ, xλ − x〉 ≤ lim sup

λ→0
ϕλ(x) − lim inf

λ→0
ϕλ(xλ)

≤ ϕ(x) − ϕ(x) = 0.

Recall that F + T ∗∂ jT is B-pseudomonotone, so, there exists x∗(y) ∈ F(x) + T ∗∂ j(T x)
such that 〈x∗(y), x − y〉 ≤ lim inf

λ→0
〈x∗

λ, xλ − y〉. We take the lim sup as λ → 0 for (3.5), then

0 ≤ lim sup
λ→0

(〈x∗
λ, y − xλ〉 + ϕλ(y) − ϕλ(xλ)

) ≤ 〈x∗(y), y − x〉 + ϕ(y) − ϕ(x).

We get

sup
x∗∈F(x)+T ∗∂ j(T x̄)

〈x∗, y − x〉 + ϕ(y) − ϕ(x) ≥ 0 for all y ∈ C . (3.6)

Therefore,

sup
x∗∈F(x̄)

〈x∗, y − x〉 + ϕ(y) − ϕ(x) + j◦(x̂, ŷ − x̂) ≥ 0 for all y ∈ C .

This means that x is a weak solution of ProblemP, namely, every weak cluster point of {xλ}
is a weak solution of ProblemP.
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Finally, we shall prove that x is also a strong solution of ProblemP. From (3.6), we have
that

inf
y∈C

(

sup
x∗∈F(x̄)+T ∗∂ j(T x̄)

〈x∗, y − x〉 + ϕ(y) − ϕ(x)

)

≥ 0.

Since F(x) + T ∗∂ j(T x) is weak compact, it leads to

inf
y∈C

(
max

x∗∈F(x̄)+T ∗∂ j(T x̄)
〈x∗, y − x〉 + ϕ(y) − ϕ(x)

)
≥ 0.

Using again Sion’s Minimax Theorem yields

inf
y∈C( max

x∗∈F(x̄)+T ∗∂ j(T x̄)
〈x∗, y − x〉 + ϕ(y) − ϕ(x))

= max
x∗∈F(x̄)+T ∗∂ j(T x̄)

inf
y∈C(〈x∗, y − x〉 + ϕ(y) − ϕ(x)) ≥ 0.

Thus, we can find x∗ ∈ F(x) and ξ ∈ T ∗∂ j(T x) such that

〈x∗ + T ∗ξ, y − x〉 + ϕ(y) − ϕ(x) ≥ 0 for all y ∈ C .

By the definition of Clarke’s subgradient, we obtain

〈x∗, y − x〉 + j◦(T x, T y − T x) + ϕ(y) − ϕ(x) ≥ 0 for all y ∈ C .

We finally conclude that x is a strong solution of ProblemP. ��
Remark 3.7 Note that ProblemP is given in a very general form and it includes several
interesting special cases which we want to state here:

(i) If ϕ ≡ 0, the ProblemP reduces to the following problem:

sup
x∗∈F(x)

〈x∗, y − x〉 + j◦(x̂, ŷ − x̂) ≥ 0 for all y ∈ C .

Applying Theorem 3.1, we can conclude that the problem above admits at least one
solution and the weak solutions are equivalent to the strong solutions.

(ii) If j ≡ 0, ProblemP and ProblemPλ reduce to ProblemQ and ProblemQλ,
respectively:

ProblemQ sup
x∗∈F(x)

〈x∗, y − x〉 + ϕ(y) − ϕ(x) ≥ 0 for all y ∈ C,

ProblemQλ sup
x∗∈F(x)

〈x∗, y − x〉 + ϕλ(y) − ϕλ(x) ≥ 0 for all y ∈ C .

Applying Theorem 3.6, we see that cluster point of the solutions sequence ofProblemQλ

is a strong solution of ProblemQ which is also a weak solution of ProblemQ.
(iii) If j = ϕ ≡ 0, the ProblemP reduces to the following problem:

sup
x∗∈F(x)

〈x∗, y − x〉 ≥ 0 for all y ∈ C .

Theorem 3.1 implies that the above problem admits at least one solution and the weak
solutions are equivalent to the strong solutions. In fact, such problem has been studied
by Bianchi–Kassay–Pini in [4].
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4 Stability analysis

In this section, we are going to study the stability ofProblemP. To this end, let us assume that
Fk and Ck are the perturbed functions and perturbed constraint sets of F and C , respectively,
and J is the normalized duality mapping. The main goal of this section is to prove the
solvability of the following perturbed ProblemPλ,k , and further discuss the relationship
between the solution sets of the perturbed ProblemPλ,k and the original ProblemP, where
the perturbed ProblemPλ,k is given as follows:

ProblemPλ,k : Find xλ,k ∈ Ck such that

sup
x∗
λ,k∈Fk (xλ,k )

〈x∗
λ,k, y − xλ,k〉 + ϕλ(y) − ϕλ(xλ,k) + αk〈J (xλ,k), y − xλ,k〉

+ j◦(x̂λ,k, ŷ − x̂λ,k) ≥ 0 for all y ∈ Ck .

Here, αk > 0 is a given regularization parameter which tends to 0 as k → ∞. In the sequel,
we denote by Sλ,k the solution set of ProblemPλ,k .

From Lemma 2.5, it is not difficult to see that a solution of the inequality

sup
x∗
λ,k∈Fk (xλ,k )+T ∗∂ j(T xλ,k )

〈x∗
λ,k, y − xλ,k〉 + ϕλ(y) − ϕλ(xλ,k)

+ αk〈J (xλ,k), y − xλ,k〉 ≥ 0 for all y ∈ Ck .

(4.1)

is also a solution of ProblemPλ,k . Following this observation, we could prove the solvability
of ProblemPλ,k by proving the existence of solutions of problem (4.1).

The main result in this section is the following theorem.

Theorem 4.1 Let X be a reflexive and separable Banach space, C ⊆ X be a nonempty,
closed and convex set, and F : X → 2X

∗
be an operator such that C ⊆ dom(F). Suppose

that the sets {Ck} and the multivalued functions {Fk} satisfy the following conditions:

A for every k, Ck is nonempty, closed and convex, and {Ck} converges to C in the sense of
Mosco;

B (i) for each k ∈ N, Ck ⊆ dom(Fk), and Fk(x) is bounded, closed and convex for every
x ∈ dom(Fk);
(ii) for every finite dimensional subspace Z of X, for every {xn}n∈N ⊂ Ck ∩ Z , xn → x,
and x∗

n ∈ Fk(xn), there is a subsequence {x∗
n j

} converging in the weak topology to some
point in Fk(x);
(iii) Fk is B-pseudomonotone on Ck;
(iv) there exists y0 ∈ ∩k∈NCk such that for each k ∈ N

lim‖x‖→+∞
inf x∗∈Fk (x)+T ∗∂ j(T x)〈x∗, x − y0〉

‖x‖ = +∞;

C (i) C ∪k Ck ⊂ dom(F), F is bounded on ∪kCk and has nonempty, bounded, closed and
convex values;
(ii) F is B-pseudomonotone on C ∪k Ck;
(iii) Haus(Fk(x), F(x)) ≤ βk‖x‖+1 , for every x ∈ dom(Fk) ∩ dom(F), where βk > 0 is
such that βk → 0 as k → ∞ and Haus stands for the Hausdorff metric in X;
(iv) there exists y1 ∈ ∩kCk �= ∅ (it is nonempty by virtue of B (iv)) such that

lim‖x‖→+∞
inf x∗∈F(x)+T ∗∂ j(T x)〈x∗, x − y1〉

‖x‖ = +∞;
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(v) j : V → R is a locally Lipschitz function such that (2.1) holds with some with c > 0;
(vi) T : X → V is a linear and compact operator.

Then,ProblemPλ,k admits at least one solution xλ,k , and theweak solutions are the strong
solutions of ProblemPλ,k . Moreover, there exists a subsequence of {xλ,k} which converges
weakly to a weak solution of ProblemP which is also a strong solution of ProblemP as
k → ∞ and λ → 0.

Proof The proof of this theorem is divided into several steps.
Step 1. The solution set of ProblemPλ,k is nonempty, and all weak solutions are strong

solutions.
The main idea is to apply Theorem 3.3. So, we will show that all conditions of Theorem

3.3 are satisfied. Set GFk : X × X → R defined by

GFk (x, y) = sup
x∗∈Fk (x)+T ∗∂ j(T x)

〈x∗, y − x〉 + ϕλ(y) − ϕλ(x) + αk〈J (x), y − x〉.

Recall that J is continuous, bounded and B-pseudomonotone (see Lemma 2.10), so it is easy
to see that for any αk > 0 the multivalued mappingFk = Fk +αk J satisfies the assumptions
of Theorem 3.3 (see the proof of Theorem 3.6). By assumption B(iv), there exists a function
h : R+ → R

+ with hk(r) → +∞ as r → +∞ such that

inf
x∗∈Fk (x)+T ∗∂ j(T (x))

〈x∗, x − y0〉 ≥ hk(‖x − y0‖)‖x − y0‖.

Hence,

GFk (x, y0) = sup
x∗∈Fk (x)+T ∗∂ j(T x)

〈x∗, y0 − x〉 + ϕλ(y0) − ϕλ(x) + αk〈J (x), y0 − x〉

≤ −hk(‖x − y0‖)‖x − y0‖ + ϕλ(y0) − ϕλ(x) + αk〈J (x), y0 − x〉
≤ −hk(‖x − y0‖)‖x − y0‖ + ϕλ(y0) − (αλ + βλ‖x‖) + αk〈J (x), y0 − x〉
≤ −hk(‖x − y0‖)‖x − y0‖ + |βλ|‖x‖ + (ϕλ(y0) − αλ) + αk〈J (x), y0 − x〉.

We infer that

lim sup
‖x‖→+∞

GFk (x, y0)

‖x − y0‖ ≤ lim sup
‖x‖→+∞

( |βλ|‖x‖
‖x − y0‖ − hk(‖x − y0‖)

)

+ lim sup
‖x‖→+∞

(
ϕλ(y0) − αλ

‖x − y0‖ + αk〈J (x), y0 − x〉
‖x − y0‖

)

= −∞.

This implies that for each k ∈ N there exists Mk > ‖y0‖, such that

GFk (x, y0) < 0 for all x ∈ C with ‖x‖ > M .

Therefore, using Theorem 3.3, we see that the solution set of ProblemPλ,k is nonempty and
all weak solutions are strong ones.

Step 2. {xλ,k} is uniformly bounded with respect to λ > 0 and k ∈ N.
Suppose by contradiction that there exists an unbounded subsequence of {xλ,k}, not rela-

beled, such that ‖xλ,k‖ → +∞ as λ → 0+ and k → ∞. From assumption C(iv), it follows
that

lim‖xλ,k‖→+∞
infx∗

λ,k∈F(xλ,k )+T ∗∂ j(T xλ,k )〈x∗
λ,k, xλ,k − y1〉

‖xλ,k‖ = +∞.
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Since xλ,k ∈ Ck is a solution of ProblemPλ,k , which is also a strong solution, there exists
x∗
λ,k ∈ Fk(xλ,k) such that

〈x∗
λ,k, y − xλ,k〉 + ϕλ(y) − ϕλ(xλ,k) + αk〈J (xλ,k), y − xλ,k〉

+ j◦(x̂λ,k, ŷ − x̂λ,k) ≥ 0 for all y ∈ Ck .
(4.2)

Taking y = y1 in inequality (4.2), we have

〈x∗
λ,k + αk J (xλ,k), y1 − xλ,k〉 + ϕλ(y1) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷ1 − x̂λ,k) ≥ 0.

By virtue of Lemma 3.76 of Aliprantis–Border [1], for any x∗
λ,k ∈ Fk(xλ,k) and ε > 0, there

exists x̃∗
λ,k ∈ F(xλ,k) such that

‖x∗
λ,k − x̃∗

λ,k‖ < Haus(Fk(xλ,k), F(xλ,k)) + ε.

We take ε = βk‖xλ,k−y1‖ in the inequality above and use C(iii), which leads to

‖x∗
λ,k − x̃∗

λ,k‖ ≤ βk

‖xλ,k‖ + 1
+ βk

‖xλ,k − y1‖ .

Let λ0 > 0 be fixed. For all λ < λ0, we get the following estimates

〈x̃∗
λ,k, xλ,k − y1〉 ≤ 〈x̃∗

λ,k, xλ,k − y1〉 + 〈x∗
λ,k + αk J (xλ,k), y1 − xλ,k〉

+ ϕλ(y1) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷ1 − x̂λ,k)

≤ 〈x̃∗
λ,k, xλ,k − y1〉 + 〈x∗

λ,k + αk J (xλ,k), y1 − xλ,k〉
+ ϕλ(y1) − ϕλ0(xλ,k) + j◦(x̂λ,k, ŷ1 − x̂λ,k)

≤ 〈x∗
λ,k − x̃∗

λ,k, y1 − xλ,k〉 + αk‖xλ,k‖(‖y1‖ − ‖xλ,k‖)
+ ϕλ(y1) − αλ0 + |βλ0 |‖xλ,k‖ + 〈T ∗ξ, y1 − xλ,k〉

≤
(

βk

‖xλ,k‖ + 1
+ βk

‖xλ,k − y1‖
)

‖y1 − xλ,k‖ + αk‖xλ,k‖(‖y1‖ − ‖xλ,k‖)
+ ϕλ(y1) − αλ0 + |βλ0 |‖xλ,k‖ + 〈T ∗ξ, y1 − xλ,k〉

≤ βk

(‖y1 − xλ,k‖
‖xλ,k‖ + 1

+ 1

)
+ ‖xλ,k‖(αk‖y1‖ + |βλ0 | − αk‖xλ,k‖)

+ (ϕλ(y1) − αλ0) + 〈T ∗ξ, y1 − xλ,k〉,
where ξ ∈ ∂ j(T xλ,k) is such that 〈ξ, T (y1−xλ,k)〉 = j◦(x̂λ,k, ŷ1−x̂λ,k) (see Lemma2.5(ii)).
Then, we obtain

〈x̃∗
λ,k + T ∗ξ, xλ,k − y1〉 ≤ βk

(‖y1 − xλ,k‖
‖xλ,k‖ + 1

+ 1

)
+ ‖xλ,k‖(αk‖y1‖

+ |βλ0 | − αk‖xλ,k‖) + (ϕλ(y1) − αλ0).

This implies

+∞ = lim‖xλ,k‖→+∞
〈x̃∗

λ,k + T ∗ξ, xλ,k − y1〉
‖xλ,k‖ < ∞,

so a contradiction.
Step 3. Each weak cluster point of {xλ,k} is a weak solution of ProblemP.
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Recall that xλ,k is a solution of ProblemPλ,k which is also a strong solution. So, we can
find x∗

λ,k ∈ Sk(xλ,k) := Fk(xλ,k) + αk J (xλ,k) such that

〈x∗
λ,k, z − xλ,k〉 + ϕλ(z) − ϕλ(xλ,k) + j◦(x̂λ,k, ẑ − x̂λ,k) ≥ 0 for all z ∈ Ck .

Fix any y ∈ C . From assumption A, there exists yk ∈ Ck such that yk → y. Suppose that
x ∈ C is a weak cluster point of {xλ,k}, that is, xλ,k⇀x in X (due to boundedness of {xλ,k},
so, there exists a subsequence, not relabeled, such that xλ,k⇀x as λ → 0 and k → ∞). From
the definition of Sk it follows that

Haus(Sk(x), F(x)) ≤ Haus(Fk(x), F(x)) + αk‖x‖ for all x ∈ Ck and k ∈ N.

Therefore, using condition C(iii), we obtain

Haus(Sk(xλ,k), F(xλ,k)) ≤ (αk + βk)

(
1

‖xλ,k‖ + 1
+ ‖xλ,k‖

)
.

Taking x̃∗
λ,k ∈ F(xλ,k) such that

‖x∗
λ,k − x̃∗

λ,k‖ → 0, (4.3)

since x̃∗
λ,k ∈ F(xλ,k) and {xλ,k} is bounded, it follows by C(i) that the sequence {x̃∗

λ,k} is
bounded in X∗. Keeping in mind,

0 ≤ 〈x∗
λ,k, yk − xλ,k〉 + ϕλ(yk) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷk − x̂λ,k)

= 〈x∗
λ,k − x̃∗

λ,k, yk − xλ,k〉 + 〈x̃∗
λ,k, yk − xλ,k〉

+ ϕλ(yk) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷk − x̂λ,k)

= 〈x̃∗
λ,k, y − xλ,k〉 − 〈x̃∗

λ,k, y − yk〉 − 〈x̃∗
λ,k − x∗

λ,k, yk − xλ,k〉
+ ϕλ(yk) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷk − x̂λ,k),

we get

〈x̃∗
λ,k, y − xλ,k〉 + ϕλ(yk) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷk − x̂λ,k)

≥ 〈x̃∗
λ,k, y − yk〉 + 〈x̃∗

λ,k − x∗
λ,nk , yk − xλ,k〉.

Taking into account the boundedness of {x̃∗
λ,k}, the strong convergence of yk → y, (4.3) and

the boundedness of {yk − xλ,k}, we deduce

lim inf
k→∞,λ→0

(
〈x̃∗

λ,k, y − xλ,k〉 + ϕλ(yk) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷk − x̂λ,k)

)
≥ 0.

Applying the continuity of ϕλ (see Proposition 2.8), the compactness of T and the upper
semicontinuity of (u, v) �→ j◦(u, v), we get

lim inf
k→∞,λ→0

〈x̃∗
λ,k, y − xλ,k〉 ≥ − lim sup

k→∞,λ→0
(ϕλ(yk) − ϕλ(xλ,k) + j◦(x̂λ,k, ŷk − x̂λ,k))

≥ − lim sup
k→∞,λ→0

ϕλ(yk) + lim inf
k→∞,λ→0

ϕλ(xλ,k)

− lim sup
k→∞,λ→0

j◦(x̂λ,k, ŷk − x̂λ,k)

≥ −ϕ(y) + ϕ(x) − j◦(x̂, ŷ − x̂).

(4.4)

Taking y = xλ in (4.4), one has

lim inf
k→∞ 〈x̃∗

λ,k, xλ − xλ,k〉 ≥ 0.
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Because F is B-pseudomonotone, for every y ∈ C , there exists x∗(y) ∈ F(x) such that

〈x∗(y), x − y〉 ≤ lim inf
k→∞,λ→0

〈x̃∗
λ,k, xλ,k − y〉. (4.5)

Note that {xλ,k} is a solution of ProblemPλ,k . So this yields

〈x̃∗
λ,k, xλ,k − y〉 = 〈x̃∗

λ,k, xλ,k − yk〉 + 〈x̃∗
λ,k, yk − y〉

= 〈x̃∗
λ,k − x∗

λ,k, xλ,k − yk〉 + 〈x∗
λ,k, xλ,k − yk〉 + 〈x̃∗

λ,k, yk − y〉
≤ ‖x̃∗

λ,k − x∗
λ,k‖X∗‖xλ,k − yk‖ + ϕλ(yk) − ϕλ(xλ,k)

+ j◦(x̂λ,k, ŷk − x̂λ,k) + 〈x̃∗
λ,k, yk − y〉.

(4.6)

Taking the lim sup as k → ∞ and λ → 0 in (4.6), we obtain

lim sup
k→∞,λ→0

〈x̃∗
λ,k, xλ,k − y〉 ≤ ϕ(y) − ϕ(x) + j◦(x̂, ŷ − x̂),

where we have used Proposition 2.8(i), (4.3) and C(vi). With help of (4.5), it results in

〈x∗(y), x − y〉 ≤ ϕ(y) − ϕ(x) + j◦(x̂, ŷ − x̂)

for all y ∈ C . This means that x is a weak solution to ProblemP. Employing the same
arguments as in the proof of Theorem 3.6, we conclude that x is also a strong solution of
ProblemP. ��
Remark 4.2 From the proof of Theorem 4.1, we can observe that for each λ > 0 fixed it holds
w − lim sup

k→∞
Sλ,k ⊆ Sλ, where the set Sλ is the solution set of ProblemPλ. In addition, it

holds

w − lim sup
λ→0

Sλ ⊆ S and w − lim sup
λ→0

(w − lim sup
k→∞

Sλ,k) ⊆ w − lim sup
λ→0

Sλ ⊆ S.

When the set
⋃

λ>0,k∈N Sλ,k is bounded, where Sλ,k is the solution set of ProblemPλ,k ,
then hypothesis C(iii) can be relaxed and we have the following corollary.

Corollary 4.3 Under the assumptions of Theorem 4.1 without supposing condition C(iii), if⋃
λ>0,k∈N Sλ,k is bounded and there exists a bounded function τ : R+ → R+ such that for

any x ∈ dom(Fk) ∩ dom(F), and for every x∗ ∈ F(x) there exists x̃∗ ∈ Fk(x) satisfying

‖x∗ − x̃∗‖ ≤ βkτ(‖x‖),
where βk > 0 and βk → 0, as k → ∞, then any sequence {xλ,k} with xλ,k ∈ Sλ,k has a
subsequence that converges weakly to a weak solution of ProblemP (which is also a strong
solution ProblemP ).

5 Application to a stationary incompressible fluidmodel

The goal of this section is to apply the obtained abstract results in Sects. 3 and 4 to a
stationary Navier–Stokes equation with nonmonotone and multivalued constitutive law on
boundary. The main reason that we focus our attention to stationary and nonsmooth Navier–
Stokes equations is the fact that the Navier–Stokes operator is pseudomonotone, but it is not
monotone.

Beforewe give the classical formula of the considered fluidmodel, we describe its physical
setting. Given a bounded domain Ω ⊂ R

d with d = 2, 3 such that Ω has a Lipschitz
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continuous boundary Γ = ∂Ω , we suppose that Γ is separated into four measurable disjoint
parts Γ0, Γ1, Γ2 and Γ3 such that meas(Γ0) > 0. In what follows, we use the symbol Sd for
the space of second-order symmetric tensors, and the inner product and the norm of Rd and
S
d are defined, respectively, by

u · v = uivi , ‖v‖Rd = (v · v)
1
2 for all u = (ui ), v = (vi ) ∈ R

d ,

σ : τ = σi jτi j , ‖τ‖Sd = (τ : τ )
1
2 for all σ = (σi j ), τ = (τi j ) ∈ S

d .

Moreover, the normal and tangential components of a vector u on Γ are given by uν = u · v
and uτ = u− uνν, where ν is the unit outward normal vector on the boundary Γ . Likewise,
the normal and tangential components of a tensor σ on Γ are defined by σν = σν · ν

and στ = σν − σνν, respectively. The considered mathematical model of the stationary
Navier–Stokes problem is stated as follows:

ProblemQ. Find a velocity field u : Ω → R
d and a pressure p : Ω → R such that

− μ�u + (u · ∇)u + ∇ p = f in Ω, (5.1)

divu = 0 in Ω, (5.2)

u = 0 on Γ0, (5.3)
{
uν = 0

− τ τ (u) ∈ ∂ j(uτ ),
on Γ1, (5.4)

⎧
⎪⎨

⎪⎩

uν + g ≥ 0, τν(u, p) ≥ 0

(uν + g)τν(u, p) = 0

τ τ (u) = 0

on Γ2, (5.5)

{
− τν(u, p) ∈ ∂ψ(uν)

uτ = 0
on Γ3, (5.6)

where τ (u, p) := −pI + 2μ(∇u + ∇uT ) is the full stress tensor.
We briefly discuss the equations and conditions in ProblemQ, more details can be found

in Migórski–Dudek [25]. The system describes a stationary flow of incompressible viscous
liquid occupying the volume Ω acted to external volume force f . Equation (5.1) is the
conservation law, where μ > 0 is the kinematic viscosity coefficient, and the nonlinear term
(u · ∇)u is called the convective term with

(u · ∇)u =
⎛

⎝
d∑

j=1

u j
∂ui
∂x j

⎞

⎠

d

i=1

.

Equation (5.2) reveals that the fluid is incompressible, whereas Eq. (5.3) states that the fluid
adheres on the boundary Γ0. Moreover, Eq. (5.4) points out that there is no fluid across
the boundary Γ1, and a multivalued and nonmonotone friction law holds. Further, Eq. (5.5)
represents a generalized Signorini-type contact condition with frictional effect on �2, where
g ∈ L2(�2;R) is such that g ≥ 0, see, for example, Saito–Sugitani–Zhou [35]. Finally,
Eq. (5.6) indicates that the tangential component of the velocity field vanishes, and the fluid
fulfills a monotone and multivalued boundary condition on �3.

In order to obtain the weak formulation of ProblemQ, let us consider the following
function spaces

X̃ = {v ∈ C∞(�;Rd) : div v = 0 in Ω, v = 0 on Γ0, vν = 0 on Γ1, vτ = 0 on Γ3},
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X = closure of X̃ in H1(Ω;Rd).

Then, we can prove that X endowed with the norm X � u �→ ‖(∇u + ∇uT )‖L2(�;Sd ) is a
reflexive and separable space. In addition, the trace operator from X to V := L2(�;Rd) is
denoted by T : X → V which turns out to be compact. Moreover, we define the admissible
set to the velocity fields by

C = {v ∈ X : vν + g ≥ 0 on Γ2}.
We suppose the following assumptions on the data of ProblemQ.

H(ψ) ψ : R → R is a convex and lower semicontinuous function.
H( j) j : Γ1 × R

d → R is a function such that

(i) j(·, r) is measurable on Γ1 for all r ∈ R
d ;

(ii) j(x, ·) is locally Lipschitz for a.e. x ∈ Γ1;
(iii) there exists c ≥ 0 such that

‖∂ j(x, r)‖Rd ≤ c(1 + ‖r‖Rd )

for a.e. x ∈ Γ1 and for all r ∈ R
d ;

(iv) either j(x, ·) or − j(x, ·) is regular on Rd for a.e. x ∈ Γ1;

H0 μ > c‖T ‖2.
Using a standard way (see for instance Migórski-Dudek [25]), we obtain the weak

variational formulation of ProblemQ as follows: Find a velocity field u ∈ C such that

μ

∫

�

∇(u) : ∇(v − u) dx +
∫

�

((u · ∇)u) · (v − u) dx

+
∫

Γ1

j0(uτ , vτ − uτ ) dΓ +
∫

Γ3

(
ψ(vν) − ψ(uν)

)
dΓ ≥

∫

�

f · (v − u) dx

for all v ∈ C .

The main existence theorem for ProblemQ is stated as follows.

Theorem 5.1 Assume that H(ψ),H( j) and H0 hold, then ProblemQ has a weak solution.

Proof First, we introduce the following operators:

F : X → X∗, 〈Fu, v〉X∗×X = 〈Au, v〉X∗×X + 〈B[u], v〉X∗×X for u, v ∈ X ,

A : X → X∗, 〈Au, v〉X∗×X = μ

∫

Ω

∇u : ∇v dx,

B[·] : X → X∗, B[u] := B(u, u), 〈B(u, u), v〉X∗×X =
∫

Ω

((u · ∇)u) · v dx,

ϕ : X → R, ϕ(v) =
∫

�3

ψ(vν) dΓ ,

f ∈ X∗, 〈 f , v〉X∗×X =
∫

�

f · v dx .

Therefore, u ∈ C is a weak solution of ProblemQ if and only if, u ∈ C solves the inequality

〈Fu − f , v − u〉X∗×X + ϕ(v) − ϕ(u) + j◦(T u, T v − T u) ≥ 0 for all v ∈ C . (5.7)
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We can easily prove that F is a Navier-Stoke type operator in the sense of Definition 2.11.
So, from Lemma 2.12, we know that F is coercive, continuous and B-pseudomonotone.
Moreover, we could apply the same arguments as in Migórski–Dudek [25] in order to see
that all conditions of Theorem 3.3 are fulfilled. Using this theorem, we conclude that the
inequality (5.7) is solvable, namely, ProblemQ has a weak solution. ��

Furthermore, let us study the stability of ProblemQ. For this purpose, we assume that
{μk} and {gk} ⊂ L2(�2;R) are such that μk, μ > 0 and μk → μ as k → ∞, and gk ≥ 0
and gk → g in L2(�2;R) as k → ∞. The perturbed problem of ProblemQ is given by

ProblemQk. Find a velocity field uk : Ω → R
d and a pressure pk : Ω → R such that

− μ�uk + (uk · ∇)uk + ∇ pk = f in Ω,

divuk = 0 in Ω,

uk = 0 on Γ0,
{
uk,ν = 0

− τ τ (uk) ∈ ∂ j(uk,τ ),
on Γ1,

⎧
⎪⎨

⎪⎩

uk,ν + gk ≥ 0, τν(uk, pk) ≥ 0

(uk,ν + gk)τν(uk, pk) = 0

τ τ (uk) = 0

on Γ2,

{
− τν(uk, pk) ∈ ∂ψ(uk,ν)

uk,τ = 0
on Γ3.

Then, the weak formulation of ProblemQk is given in the following form:
ProblemQV

k . Find a displacement u ∈ Ck such that

〈Fku − f , v − u〉 + ϕ(v) − ϕ(u) + j◦(T u, T v − T u) ≥ 0 for all v ∈ Ck,

where Fk : X → X∗ is defined by

〈Fku, v〉X∗×X = 〈Aku, v〉X∗×X + 〈B[u], v〉X∗×X for u, v ∈ X ,

with

Ak : X → X∗, 〈Aku, v〉X∗×X = μk

∫

Ω

∇u : ∇v dx,

and the set Ck is given by

Ck = {v ∈ X : vν + gk ≥ 0 on Γ2}.
We are now in a position to give the following stability result for ProblemQwhich shows

that the weak solution set of ProblemQk converges to the weak solution set of ProblemQ
in the sense of Kuratowski as k → ∞.

Theorem 5.2 Suppose that all assumptions of Theorem 5.1 hold and further assume the
following hypotheses:

• μk, μ > 0 and μk → μ as k → ∞;
• gk, g ∈ L2(�2; [0,+∞)) are such that gk → g in L2(�2; [0,+∞)) as k → ∞.

Then we have the following assertions:

(i) for each k ∈ N the solution set of ProblemQV
k , denoted by Sk , is nonempty,
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(ii) w − lim supk→∞ Sk ⊂ S,

where S is the solution set of ProblemQ.

Proof (i) The solvability of ProblemQV
k is a direct consequence of Theorem 5.1.

(ii) Arguing as in the proof of Theorem 5.1, one can show that the set
⋃

k∈N Sk is bounded
in X . Also, we can apply the same arguments as in the proof of Theorem 16 by Xiao–Sofonea
[39] in order to prove that Ck converges to C in the sense of Mosco and Fk, F satisfy the
framework of Corollary 4.3. So, the desired conclusion can be obtained by applyingCorollary
4.3. ��
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