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Abstract. The purpose of this paper is to study the existence and nonex-

istence of nontrivial solutions for quasilinear elliptic problems driven by the

nonhomogeneous (p, q)-Laplace operator−∆p−∆q depending on two param-

eters in bounded and unbounded domains. First, using variational methods,

we prove the existence and nonexistence of positive solutions for a class of

sublinear (p, q)-Laplacian problems with two parameters. Second, using a

nonstandard variational approach, we prove the existence of bounded solu-

tions for nonlinear problems of (p + q) sublinear type involving the (p, q)-

Laplace operator with two parameters in unbounded domains.

1. Introduction

In this paper, we are concerned with the study of two nonlinear problems

involving a differential operator of (p, q)-Laplacian type with positive parameters

of the form

(P1) −∆pu−∆qu = λf(x, u) + µg(x, u), x ∈ Ω

and

(P2) −∆pu− µ∆qu = λf(x, u), x ∈ RN ,

where Ω ⊂ RN , N ≥ 2, is either a bounded domain or an unbounded domain,

1 < q < p < +∞, λ and µ are positive parameters and ∆ru = div(|∇u|r−2∇u)

stands for the classical r-Laplacian for 1 < r < ∞.
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It should be mentioned that in recent years several studies have been carried out

to investigate related problems and many papers have appeared dealing with equa-

tions driven by the (p, q)-Laplacian in both bounded and unbounded domains. We

refer, for example, to the papers of Baldelli-Filippucci [2], Baldelli-Brizi-Filippucci

[3, 4], Bobkov-Tanaka [5, 6, 7], Candito-Marano-Perera [8], and Motreanu-Tanaka

[14], see also the references therein. Note that the (p, q)-Laplacian appears in a

wide range of applications, we mention e.g.,biophysics, plasma physics, reaction-

diffusion equations, and models of elementary particles.

Regarding problem (P1) let us point out that more works have been done in this

direction in the case of nonlinear problems involving the p-Laplacian. Namely,

Maya-Shivaji [13] studied the semilinear case p = 2 and similar results have been

established by Perera [15] and El Manouni-Perera [10] when only the p-Laplacian

operator appears with p > 1 and p ̸= 2 in the cases of scalar equations and

systems of two second order quasilinear equations, respectively.

As for problem (P2), we consider different type of problems with two param-

eters for the (p, q)-Laplacian in RN . In particular each parameter is on one side

of the quasilinear equation. Here, we do not minimize a Rayleigh-type quotient,

but we use a nonstandard variational approach and show the existence of at least

one solution corresponding to the three positive parameters. Additionally, we

establish some regularity results for the solution obtained in terms of global L∞-

estimates by constructing an iteration scheme to bound the maximal norm of the

solution following Moser’s iteration technique, see, for example, the monograph

of Drábek-Kufner-Nicolosi [9].

2. Bounded case

Let Ω ⊂ RN , N ≥ 2, be a bounded domain in RN with smooth boundary ∂Ω.

We consider the following Dirichlet problem

−∆pu−∆qu = λf(x, u) + µg(x, u) in Ω,

u = 0 on ∂Ω,
(2.1)

where 1 < q < p < ∞, λ > 0, µ > 0, ∆ru = div(|∇u|r−2∇u) stands for the

usual r-Laplacian with 1 < r < ∞ and f, g : Ω × [0,∞) → R are assumed to be

Carathéodory functions having subcritical growth of the form

(2.2) |f(x, t)| ≤ C1t
p−1, |g(x, t)| ≤ C2t

q−1 for all (x, t),
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with positive constants C1, C2. We define

(2.3)

λ1 = inf
u∈W\{0}

∫
Ω
(|∇u|p + |∇u|q) dx∫

Ω
|u|p dx

,

µ1 = inf
u∈W\{0}

∫
Ω
(|∇u|p + |∇u|q) dx∫

Ω
|u|q dx

,

where W = W 1,p
0 (Ω) which can be equipped with the equivalent norm

∥u∥ := ∥∇u∥p =

(∫
Ω

|∇u|p dx
) 1

p

for all u ∈ W 1,p
0 (Ω).

Remark 2.1. Regarding the definitions of λ1 and µ1 in (2.3), since q < p,

λ1 is just the first eigenvalue of the p-Laplacian. Indeed, it is clear that λ1 is

greater than or equal to the first eigenvalue. Taking u = tϕ1, where ϕ1 is a first

eigenfunction of the p-Laplacian with t > 0, and letting t → ∞ shows that λ1 is

less than or equal to the first eigenvalue. A similar argument shows that µ1 is the

first eigenvalue of the q-Laplacian.

We start by a nonexistence result for positive solution of problem (2.1).

Theorem 2.2. There exists α, β > 0 such that for all λ, µ satisfying λα+µβ < 1,

problem (2.1) has no positive solutions.

Proof. Suppose that (2.1) has a positive solution u ∈ W . Testing the weak

formulation of (2.1) by u, using (2.2) and (2.3) gives∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx = λ

∫
Ω

f(x, u)udx+ µ

∫
Ω

g(x, u)udx

≤ λC1

∫
Ω

|u|p dx+ µC2

∫
Ω

|u|q dx

≤
(
λ
C1

λ1
+ µ

C2

µ1

)(∫
Ω

|∇u|p dx+

∫
Ω

|∇u|q dx
)
.

The assertion of the theorem follows. □

The next theorem shows the existence of positive solutions for problem (2.1).

Theorem 2.3. Assume the following conditions:

(F1) there exists δ > 0 such that

F (x, t) :=

∫ t

0

f(x, τ) dτ ≤ 0, G(x, t) :=

∫ t

0

g(x, τ) dτ ≤ 0,

when tp + tq ≤ δ;
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(F2) there exists t0 > 0 such that F (x, t0) > 0 and G(x, t0) > 0 for a.a.x ∈ Ω;

(F3) it holds

lim sup
t→∞

F (x, t)

tp
≤ 0 and lim sup

t→∞

G(x, t)

tq
≤ 0 uniformly for a.a.x ∈ Ω.

Then exists a number ω > 0 such that (2.1) has at least two positive solutions for

λ or µ ≥ ω.

Proof. We set f(x, t) = g(x, t) = 0 if t < 0 for a.a.x ∈ Ω and consider the

C1-functional Φλ,µ : W → R given by

Φλ,µ(u) =

∫
Ω

1

p
|∇u|p dx+

∫
Ω

1

q
|∇u|q dx−

∫
Ω

λF (x, u) dx−
∫
Ω

µG(x, u) dx

for all u ∈ W . If u is a critical point of Φλ,µ, denoting by u− the negative part of

u, we have

0 = ⟨Φ ′
λ,µ(u)), u

−⟩ =
∫
Ω

|∇u|p−2∇u · ∇u− dx+

∫
Ω

|∇u|q−2∇u · ∇u− dx

−
∫
Ω

λf(x, u)u− dx−
∫
Ω

µg(x, u)u− dx

= ∥∇u−∥pp + ∥∇u−∥qq.

This shows u ≥ 0. Furthermore, u ∈ L∞(Ω) ∩ C1(Ω) (see, for example, Ho-

Kim-Winkert-Zhang [11, Theorem 3.1] and Lieberman [12, Theorem 1.7]), so the

positivity of u now follows from the weak Harnack type inequality proved by

Trudinger [18, Theorem 1.1], that is, either u > 0 or u ≡ 0. Thus, nontrivial

critical points of ϕλ,µ are positive solutions of (2.1).

By the growth condition (2.2) we get

(2.4) |F (x, t)| ≤ C3|t|p, |G(x, t)| ≤ C4|t|q for all (x, t) ∈ Ω× R,

for some positive constants C3 and C4. By (F3) there is Bλ,µ > 0 such that

(2.5) F (x, t) ≤ λ1

3pλ
|t|p and G(x, t) ≤ µ1

3pµ
|t|q for all |t| ≥ Bλ,µ.

By using (2.4) and (2.5), there is a constant Cλ,µ > 0 such that

(2.6) λF (x, t) + µG(x, t) ≤ λ1

3p
|t|p + µ1

3p
|t|q + Cλ,µ for all (x, t) ∈ Ω× R.
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Hence, since q < p, by applying (2.6) and (2.3), it follows that

Φλ,µ(u) ≥
∫
Ω

(
1

p
|∇u|p + 1

q
|∇u|q − λ1

3p
|u|p − µ1

3p
|u|q − Cλ,µ

)
dx,

≥
∫
Ω

(
1

p
|∇u|p + 1

p
|∇u|q − 2

3p
(|∇u|p + |∇u|q)− Cλ,µ

)
dx

≥ γ∥u∥p − Cλ,µ|Ω|N ,

where γ =
1

3p
and | · |N is the Lebesgue measure in RN . Hence, Φλ,µ is bounded

from below and coercive. In addition, Φλ,µ is sequentially weakly lower semi-

continuous which implies the existence of a global minimizer u1 ∈ W 1,p(Ω) of

Φλ,µ(u).

Claim 1: There exists ω > 0 such that inf Φλ,µ < 0 for λ ≥ ω or µ ≥ ω.

In order to prove this, we take a sufficiently large compact subset Ω′ of Ω and

u0 ∈ W 1,p
0 (Ω) such that u0 = t0 on Ω′ and 0 ≤ u0 ≤ t0 on Ω \ Ω′, where t0 is as

in (F2). Then we have

∫
Ω

F (x, u0) dx ≥
∫
Ω′

F (x, t0) dx− C1|t0|p|Ω \ Ω′|N > 0∫
Ω

G(x, u0) dx ≥
∫
Ω′

G(x, t0) dx− C2|t0|q|Ω \ Ω′|N > 0,

for |Ω \ Ω′|N sufficiently small. This yields

Φλ,µ(u0)

≤
∫
Ω

(
1

p
|∇u0|p +

1

q
|∇u0|q

)
dx− λ

∫
Ω

F (x, u0) dx− µ

∫
Ω

G(x, u0) dx < 0

for λ or µ large enough. This proves Claim 1.

From Claim 1, choosing λ or µ ≥ ω, we get that Φλ,µ(u1) < 0 = Φλ,µ(0) and

so u1 ̸= 0. Now, let us fix λ, µ with λ or µ ≥ ω.

Claim 2: The origin is a strict local minimizer of Φλ,µ.

Let u ∈ W 1,p
0 (Ω). We set Ωu = {x ∈ Ω : |u(x)|p + |u(x)|q > δ}, where δ > 0 is

given in (F1). By hypothesis (F1), F (x, u) ≤ 0 and G(x, u) ≤ 0 on Ω \Ωu. Then
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we have

Φλ,µ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qp − λ

∫
Ωu

F (x, u) dx− λ

∫
Ω\Ωu

F (x, u) dx

− µ

∫
Ωu

G(x, u) dx− µ

∫
Ω\Ωu

G(x, u) dx

≥ 1

p
∥u∥p − λ

∫
Ωu

F (x, u)dx− µ

∫
Ωu

G(x, u) dx.

(2.7)

Applying (2.2), Hölder’s inequality and the Sobolev embedding theorem, it follows

that

λ

∫
Ωu

F (x, u) dx+ µ

∫
Ωu

G(x, u) dx

≤ λC1

∫
Ωu

|u|p dx+ µC2

∫
Ωu

|u|q dx

≤ λC ′
1|Ωu|

1− p
r

N ∥∇u∥pp + µC ′
2|Ωu|

1− q
s

N ∥∇u∥qq,

(2.8)

for some positive constants C ′
1 and C ′

1 and where r =
Np

N − p
if p < N, r > p if

p ≥ N and s =
Nq

N − q
if q < N , s > q if q ≥ N . Since q < p and

1 <
|u|p + |u|q

δ
on Ωu,

we obtain

|Ωu|N ≤ 1

δ

∫
Ωu

(|u|p + |u|q) dx ≤ C ′∥u∥p,

for some positive constant C ′. Hence |Ωu|N → 0 as ∥u∥ → 0 and Claim 2 follows

from (2.7) and (2.8).

Since Φλ,µ is coercive, every Palais-Smale sequence is bounded and hence con-

tains a convergent subsequence. So the mountain pass lemma now gives a critical

point u2 of Φλ,µ at the level

c := inf
γ∈Γ

max
u∈γ([0,1])

Φλ,µ(u) > 0,

where Γ = {γ ∈ C([0, 1],W 1,p
0 (Ω)) : γ(0) = 0, γ(1) = u1} is the class of paths

joining the origin to u1. Therefore we found two positive solutions u1, u2 such

that Φλ,µ(u1) < 0 = Φλ,µ(0) < Φλ,µ(u2).

This completes the proof of the theorem. □
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3. Unbounded case

In this part we consider the following nonlinear problem in RN

−∆pu− µ∆qu = λf(x, u) in RN ,(3.1)

where 1 < q < p < N,N < p + q, λ, µ > 0 are two real parameters and f : RN ×
[0,∞) → R+ is a Carathéodory function that satisfies the following conditions:

(H1) There exists δ ∈ (0, 1) such that 0 ≤ f(x, t) ≤ m(x)tp+q−1 for a.a.x ∈ RN

and for all t ≥ 0, where m is a positive function such that m ∈ Lr
(
RN
)
∩

Lr+δ
(
RN
)
with r =

1

1− p
p∗ − q

q∗
;

(H2) There exists a nonempty open subset Ω of RN and constants δ0, δ1 > 0

such that f(x, t) > 0 for all (x, t) ∈ Ω× (δ0, δ1).

We denote by X the reflexive Banach space D1,p
(
RN
)
∩ D1,q

(
RN
)
, where for

1 < s < N

D1,s
(
RN
)
=
{
u ∈ Ls∗

(
RN
)
: ∇u ∈ Ls

(
RN
)}

,

is equipped with the norm

∥u∥ := ∥u∥X = ∥u∥D1,p(RN ) + ∥u∥D1,q(RN ).

By a weak solution of problem (3.1) we mean any u ∈ X such that

(3.2)

∫
Rn

|∇u|p−2∇u · ∇φdx+ µ

∫
Rn

|∇u|q−2∇u · ∇φdx = λ

∫
RN

f(x, u)φdx

is satisfied for all φ ∈ X.

Note that r = N
p+q−N and the assumptions N < p+q as well as (H1) guarantee

that r and both integrals in (3.2) are well-defined, respectively.

Our first result is the following one.

Theorem 3.1. Let 1 < q < p < N with N < p+ q and suppose that (H1)–(H2)

are satisfied. Then there exist λ, µ > 0 such that problem (3.1) has a positive

solution u ∈ X.

Proof. Let 1 < α < q be fixed and set F (x, t) =
∫ t

0
f(x, τ) dτ . We consider the

functional J : X \ {0} → R defined by

J(u) =

∫
RN

F (x, u) dx

(∥∇u∥αp + ∥∇u∥p∗
p )(∥∇u∥αq + ∥∇u∥q∗q )

,
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which is well defined and bounded. Indeed, in view of (H1), the Sobolev embed-

ding theorem and since α < p < p∗ and α < q < q∗, we get∫
RN

F (x, u) dx ≤ ∥m∥r∥u∥pp∗∥u∥qq∗

≤ c1∥∇u∥pp∥∇u∥qq
≤ c1(∥∇u∥αp + ∥∇u∥p

∗

p )(∥∇u∥αq + ∥∇u∥q
∗

q ),

for some c1 > 0. Hence, we have

J(u) ≤ c1 for all u ∈ X \ {0}.

Let S := sup
0̸=u∈X

J(u) and choose φ0 ∈ C∞
0

(
RN
)
such that

suppφ0 ⊂⊂ Ω and sup
x∈RN

φ0(x) > δ0,

where Ω and δ0 are given in (H2). Thanks to (H2), it holds F (x, t) > 0 and

G(x, t) > 0 on Ω × (δ0,∞). It follows that S > S0 with S0 = 1
2J(φ0) > 0. Let

{uk}k≥1 ⊂ X, with uk ̸= 0 for all k ∈ N, be a sequence such that

J(uk) → S as k → +∞.

Since S > S0 and J(uk
+) ≥ J(uk), one can choose

uk ≥ 0 and J(uk) ≥ S0 for all k ∈ N.

Then we obtain

S0(∥∇uk∥αp + ∥∇uk∥p
∗

p )(∥∇uk∥αq + ∥∇uk∥q
∗

q ) ≤
∫
RN

F (x, uk) dx

≤ c1∥∇uk∥pp∥∇uk∥qq,

for all k ∈ N. It follows that ∥∇uk∥p and ∥∇uk∥q are bounded. Hence there exist

constants 0 < A1 < A2 < ∞ and 0 < A3 < A4 < ∞ such that

A1 ≤ ∥∇uk∥p ≤ A2 and A3 ≤ ∥∇uk∥q ≤ A4 for all k ∈ N.

Then, due to the reflexivity of X, one can find a subsequence (still denoted by

{uk}k≥1) and an element u ∈ X such that

uk ⇀ u in X and a.e. in RN .

Then uk ⇀ u in D1,p
(
RN
)
and uk ⇀ u in D1,q

(
RN
)
.
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Let now R > 0. Using the Rellich–Kondrachov theorem (see Adams [1, p. 144],

p. 144), the embedding D1,p (BR) ↪→ Lp(BR) is compact, where BR denotes the

ball in RN with center zero and radius R > 0. This implies that

uk → u in Lp (BR) .

Since RN =
⋃

R>0 BR, we deduce that u ≥ 0 a.e. in RN . By using Hölder’s

inequality, (H1) and (H2), we have for all R > 0 and k ∈ N,∣∣∣∣∣
∫
|x|≥R

F (x, uk) dx

∣∣∣∣∣
≤

(∫
|x|≥R

m(x)r dx

) 1
r
(∫

|x|≥R

|uk|p
∗
dx

)N−p
N
(∫

|x|≥R

|uk|q
∗
dx

)N−q
N

≤ c2

(∫
|x|≥R

m(x)r dx

) 1
r

,

where c2 is a positive constant independent of R and k. The same holds also for

u, that is ∣∣∣∣∣
∫
|x|≥R

F (x, u) dx

∣∣∣∣∣ ≤ c3

(∫
|x|≥R

m(x)r dx

) 1
r

,

for some constant c3 > 0 independent of R. Since m ∈ Lr(RN ), we have

lim
R→∞

∫
|x|≥R

m(x)r dx = 0,

which implies that for each ε > 0 there exists Rε > 0 such that

(3.3)

∣∣∣∣∣
∫
|x|≥Rε

F (x, uk) dx

∣∣∣∣∣ ≤ ε,

∣∣∣∣∣
∫
|x|≥Rε

|F (x, u) dx

∣∣∣∣∣ ≤ ε

for all k ∈ N. On the other hand, applying Young’s inequality, for any x ∈ R and

t ∈ (0,∞), we have the following estimate

F (x, t) ≤ m(x)r+δ

r + δ
+

t(p+q)(r+δ)′

(r + δ)
′ ,

for a.a.x ∈ Bε = {x ∈ RN : |x| < Rε} and for all t ∈ R. Note that (p +

q) (r + δ)
′
< p∗, since (r + δ)

′
< r′ < p∗

p+q . Hence the continuity of the Nemytskij

operator implies

(3.4)

∫
|x|<Rε

F (x, uk) dx →
∫
|x|<Rε

F (x, u) dx,
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as k → ∞ and any fixed ε > 0. Combining (3.3) and (3.4) we conclude that∫
RN

F (x, uk) dx →
∫
RN

F (x, u) dx,

as k → ∞. Hence, since J(uk) ≥ S0 we have∫
RN

F (x, u) dx ≥ S0(∥∇uk∥αp + ∥∇uk∥p
∗

p )(∥∇uk∥αq + α∥∇uk∥q
∗

q )

≥ S0(A
α
1 +Ap∗

1 )(Aα
3 +Ap∗

3 )

> 0.

Therefore u ̸≡ 0 in RN .

From the weak lower semicontinuity of the norm in D1,p(RN ) and in D1,q(RN ),

we obtain

S = lim sup
k→∞

J(uk) ≤

∫
RN

F (x, u) dx

lim inf
k→∞

(∥∇uk∥αp + ∥∇uk∥p
∗

p )(∥∇uk∥αq + ∥∇uk∥q
∗

q )
.

Thus

S ≤

∫
RN

F (x, u) dx

(∥∇u∥αp + ∥∇u∥p∗
p )(∥∇u∥αq + ∥∇u∥q∗q )

= J(u).

Consequently, we get J(u) = S.
Let φ be a fixed element in X and consider

ξp(ε) = ∥u+ εφ∥p, ξq(ε) = ∥u+ εφ∥q.

Due to the fact that u ̸= 0, and the continuity of ξp and ξq, we can find ε0 > 0

such that

∥u+ εφ∥p > 0 and ∥u+ εφ∥q > 0 for all ε ∈ (−ε0, ε0).

For ε ∈ (−ε0, ε0), we define the function

η(ε) = J(u+ εφ)

=

∫
RN

F (x, u+ εφ) dx

(∥∇u+ ε∇φ∥αp + ∥∇u+ ε∇φ∥p∗
p )(∥∇u+ ε∇φ∥αq + ∥∇u+ ε∇φ∥q∗q )

.
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The functions ∫
RN

F (x, u+ εφ) dx,

K1(ε) = ∥∇u+ ε∇φ∥αp , K2(ε) = ∥∇u+ ε∇φ∥p
∗

p ,

K3(ε) = ∥∇u+ ε∇φ∥αq , K4(ε) = ∥∇u+ ε∇φ∥q
∗

q

are differentiable with respect to ε with derivatives

K ′
1(ε) = α∥∇u+ ε∇φ∥α−p

p

∫
RN

|∇u+ ε∇φ|p−2(∇u+ ε∇φ) · ∇φdx,

K ′
2(ε) = p∗∥∇u+ ε∇φ∥p

∗−p
p

∫
RN

|∇u+ ε∇φ|p−2(∇u+ ε∇φ) · ∇φdx,

K ′
3(ε) = α∥∇u+ ε∇φ∥α−q

q

∫
RN

|∇u+ ε∇φ|q−2(∇u+ ε∇φ) · ∇φdx,

K ′
4(ε) = q∗∥∇u+ ε∇φ∥q

∗−q
q

∫
RN

|∇u+ ε∇φ|q−2(∇u+ ε∇φ) · ∇φdx.

Therefore, we have

η′(ε) =

(K1(ε) +K2(ε))(K3(ε) +K4(ε))

∫
RN

f(x, u+ εφ)φdx

(K1(ε) +K2(ε))2(K3(ε) +K4(ε))2

−
(K ′

1(ε) +K ′
2(ε))(K3(ε) +K4(ε))

∫
RN

F (x, u+ εφ) dx

(K1(ε) +K2(ε))2(K3(ε) +K4(ε))2

−
(K ′

3(ε) +K ′
4(ε))(K1(ε) +K2(ε))

∫
RN

F (x, u+ εφ) dx

(K1(ε) +K2(ε))2(K3(ε) +K4(ε))2
.

Since zero is a global maximum of the function η, one has η′(0) = 0. This implies

that

(K1(0) +K2(0))(K3(0) +K4(0))

∫
RN

f(x, u)φdx

= (K ′
1(0) +K ′

2(0))(K3(0) +K4(0))

∫
RN

F (x, u) dx

+ (K ′
3(0) +K ′

4(0))(K1(0) +K2(0))

∫
RN

F (x, u) dx.
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Thus,

(K ′
1(0) +K ′

2(0))(K3(0) +K4(0)) + (K ′
3(0) +K ′

4(0))(K1(0) +K2(0))

=
(K1(0) +K2(0))(K3(0) +K4(0))∫

RN

F (x, u) dx

∫
RN

f(x, u)φdx.

Finally, we get∫
RN

|∇u|p−2∇u · ∇φdx+ µ

∫
RN

|∇u|q−2∇u · ∇φdx = λ

∫
RN

f(x, u)φdx,

for all φ ∈ X, where

λ =
(∥∇u∥αp + ∥∇u∥p∗

p )(∥∇u∥αq + ∥∇u∥q∗q )

(α∥∇u∥α−p
p + p∗∥∇u∥p∗−p

p )(∥∇u∥αq + ∥∇u∥q∗q )

∫
RN

F (x, u) dx

,

µ =
(α∥∇u∥α−q

q + q∗∥∇u∥q∗−q
q )(∥∇u∥αp + ∥∇u∥p∗

p )

(α∥∇u∥α−p
p + p∗∥∇u∥p∗−p

p )(∥∇u∥αq + ∥∇u∥q∗q )
.

This completes the proof of Theorem 3.1. □

The following theorem gives the boundedness, positivity and decay of weak

solutions to (3.1).

Theorem 3.2. Under the same assumptions of Theorem 3.1, we have u ∈
Lσ
(
RN
)
for any σ ∈ [q∗,∞]. Moreover, u > 0 in RN and lim

|x|→∞
u(x) = 0.

Proof. Let M > 0 and define the cut-off function uM (x) = inf{u(x),M}. Let

κ > 0 and φ = uκp+1
M be a test function in (3.2). Note that φ ∈ X ∩ L∞(RN ).

This yields

(κp+ 1)

(∫
RN

uκp
M |∇uM |p dx+ µ

∫
RN

uκp
M |∇uM |q dx

)
≤ λ

∫
RN

mup+q−1uκp+1
M dx.

On one hand, we have

1

cp4

κp+ 1

(κ+ 1)p

(∫
RN

u
(κ+1)p∗

M dx

) p
p∗

≤ κp+ 1

(κ+ 1)p

∫
RN

|∇uκ+1
M |p dx,
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for some constant c4 > 0. We also have

κp+ 1

(κ+ 1)p

∫
RN

|∇uκ+1
M |p dx

= (κp+ 1)

∫
RN

uκp
M |∇uM |p dx

≤ (κp+ 1)

(∫
RN

uκp
M |∇uM |p dx+ µ

∫
RN

uκp
M |∇uM |q dx

)
.

Hence

(3.5)
1

cp4

κp+ 1

(κ+ 1)p

(∫
RN

u
(κ+1)p∗

M dx

) p
p∗

≤ λ

∫
RN

mup+q−1uκp+1
M dx.

On the other hand, for 0 < δ < 1 small enough, let t =
p∗pr

pr + δp∗

r+δ

. Remark that

p < t < p∗ and
1

r + δ
+

q

q∗
+

p

t
= 1. Regarding the second term in the right-hand

side of (3.5), using (H1) and Hölder’s inequality, we derive

(3.6)

∫
RN

mup+q−1uκp+1
M dx

≤
∫
RN

muqu(κ+1)p dx

≤
(∫

(m(x))r+δ dx

) 1
r+δ
(∫

uq∗ dx

) q
q∗
(∫

u(k+1)t dx

) p
t

.

Combining (3.5) and (3.6), there exists a constant c5 > 0 independent of M > 0

and κ > 0 such that(∫
RN

u
(κ+1)p∗

M dx

) p
p∗

≤ c5
(κ+ 1)p

κp+ 1

(∫
u(k+1)t dx

) p
t

,

that is

(3.7) ∥uM∥(κ+1)p∗ ≤ c
1

κ+1

6

[
κ+ 1

(κp+ 1)
1
p

] 1
κ+1 (∫

u(k+1)t dx

) 1
t(κ+1)

,

with c6 = c
1
p

5 . Since u ∈ Dp
(
RN
)
, and hence u ∈ Lp∗ (RN

)
, one can choose κ1

in (3.7) such that (κ1 + 1)t = p∗, that is κ1 = p∗

t − 1. Then we have

∥uM∥(κ1+1)p∗ ≤ c
1

κ1+1

6

[
κ1 + 1

(κ1p+ 1)
1
p

] 1
κ1+1

∥u∥(κ1+1)t,
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for all M > 0. Hence since lim
M→∞

uM (x) = u(x), Fatou’s lemma implies

∥u∥(κ1+1)p∗ ≤ c
1

κ1+1

6

[
κ1 + 1

(κ1p+ 1)
1
p

] 1
κ1+1

∥u∥p∗ .

This gives u ∈ L(κ1+1)p∗ (RN
)
. By the same argument, one can choose κ2 in (3.7)

such that (κ2 + 1)t = (κ1 + 1) p∗, that is κ2 =
(

p∗

t

)2
− 1 to have

∥u∥(κ2+1)p∗ ≤ c
1

κ2+1

6

[
κ2 + 1

(κ2p+ 1)
1
p

] 1
κ2+1

∥u∥(κ1+1)p∗ .

By iteration, we obtain κn = (p
∗

t )
n − 1 such that

∥u∥(κn+1)p∗ ≤ c
1

κn+1

6

[
κn + 1

(κnp+ 1)
1
p

] 1
κn+1

∥u∥(κn−1+1)p∗ for all n ∈ N.

It follows

∥u∥(κn+1)p∗ ≤ c

∑n
i=1

1
κi+1

6

n∏
i=1

[
κi + 1

(κip+ 1)
1
p

] 1
κi+1

∥u∥p∗ ,

or equivalently

∥u∥(κn+1)p∗ ≤ c

∑n
i=1

1
κi+1

6

n∏
i=1

[ κi + 1

(κip+ 1)
1
p

] 1√
κi+1


1√

κi+1

∥u∥p∗ .

Since[
z + 1

(zp+ 1)
1
p

] 1√
z+1

> 1 for all z > 0 and lim
z→∞

[
z + 1

(zp+ 1)
1
p

] 1√
z+1

= 1,

there exists a constant c7 > 0 independent of n ∈ N such that

∥u∥(κn+1)p∗ ≤ c

∑n
i=1

1
κi+1

6 c

∑n
i=1

1√
κi+1

7 ∥u∥p∗ ,

where

1

κi + 1
=

(
t

p∗

)i

,
1√

κi + 1
=

(√
t

p∗

)i

,
t

p∗
<

√
t

p∗
< 1.

Hence, there exists a constant c8 > 0 independent of n ∈ N such that

(3.8) ∥u∥(κn+1)p∗ ≤ c8∥u∥p∗



(p, q)-LAPLACIAN PROBLEMS IN BOUNDED AND UNBOUNDED DOMAINS 935

for all n ∈ N. Passing to the limit as n goes to infinity we get

(3.9) ∥u∥∞ ≤ c8∥u∥p∗ .

Therefore, due to (3.8) and (3.9), we deduce that

u ∈ Lσ
(
RN
)

for all p∗ ≤ σ ≤ ∞.

Finally, since q∗ < p∗ we have u ∈ Lσ
(
RN
)
for all q∗ ≤ σ ≤ ∞.

The positivity of u follows from the weak Harnack type inequality proved in

Trudinger [18]. Indeed, let us remark for the reader’s convenience that since

u ∈ L∞(RN ) and u ≥ 0 in a cube K = K(3ρ) ⊂ RN , then using Theorem 1.1 of

[18], there exists a constant C = C(ρ) such that

max
K(ρ)

u(x) ≤ C min
K(ρ)

u(x),

where K(ρ) is the cube of side ρ centered at 0 whose sides are parallel to the

coordinate axes. Suppose that there is a subset E of RN such that u ≡ 0 a.e. in

E with |E|N ̸= 0, where | · |N is the Lebesgue measure in RN . Then, since

E =
⋃

ρ∈Q(E ∩K(ρ)) and |E|N ̸= 0, there exists ρ′ with |E ∩K(ρ′)|N ̸= 0. Hence

0 ≤ max
K(ρ ′)

u(x) ≤ C min
K(ρ ′)

u(x) ≤ C min
E∩K(ρ ′)

u(x) = 0.

This implies that u ≡ 0 a.e. in K(ρ ′). A similar argument shows that u ≡ 0

a.e. in K(ρ) for all ρ > ρ′. Thus u ≡ 0 a.e. in RN , which leads to a contradiction.

Therefore u > 0 in RN .

Finally, since huq ∈ L
N

p−ε (RN ), 0 < ε < 1, then the decay of u follows directly

from Theorem 1 of Serrin [16].

This finished the proof of Theorem 3.2. □

Remark 3.3. Suppose that the assumptions of Theorem 3.1 are satisfied. Then

u ∈ C1,α(BR(0)) for any R > 0 with some α = α(R) ∈ (0, 1). The proof follows

immediately from the regularity results of Tolksdorf [17].

Remark 3.4. One can prove similar results as in Theorems 3.1 and 3.2 for

problem (3.1) under the more general assumptions

0 ≤ f(x, t) ≤
I∑

i=1

mi(x)t
αi+βi+1,

for a.a.x ∈ RN and for all t ≥ 0, where mi are positive functions such that

mi(x) ∈ Lsi(RN ), si ∈ [ri, ri + δ] with ri = 1

1−(
αi+1

p∗ +
βi+1

q∗ )
, αi+1

p∗ + βi+1
q∗ <

1, αi, βi > 0, i = 1, .., I and some δ ∈ (0, 1).
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The decay and the positivity of u can be obtained by the above processes if we

suppose moreover that αi ≥ p− 1 and βi ≥ q − 1, i = 1, .., I.
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[9] P. Drábek, A. Kufner, F. Nicolosi, “Quasilinear Elliptic Equations with Degenerations and

Singularities”, Walter de Gruyter & Co., Berlin, 1997.

[10] S. El Manouni, K. Perera, Existence and nonexistence results for a class of quasilinear

elliptic systems, Bound. Value Probl. 2007 (2007), Art. ID 85621, 5 pp.

[11] K. Ho, Y.-H. Kim, P. Winkert, C. Zhang, The boundedness and Hölder continuity of weak
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