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Abstract. The aim of this paper is to study a double phase problem with

nonlinear boundary condition of critical growth and with a superlinear right-
hand side that does not satisfy the Ambrosetti-Rabinowitz condition. Based on

an equivalent norm in the Musielak-Orlicz Sobolev space along with variational
tools and critical point theory, we prove the existence of at least two nontrivial,

bounded weak solutions.

1. Introduction. Given a bounded domain Ω ⊆ RN , N ≥ 2 with Lipschitz bound-
ary ∂Ω, this paper is devoted to the study of the following parametric double phase
problem with nonlinear boundary condition given by

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ α(x)|u|p−2u = λf(x, u) in Ω,(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)
· ν + β(x)|u|p∗−2u = 0 on ∂Ω,

(1.1)

where λ > 0, ν(x) denotes the unit normal of Ω at the point x ∈ ∂Ω, f : Ω×R→ R
is a Carathéodory function with subcritical growth and a certain behavior at ±∞
(see (H2)) and we suppose that

(H1) (i) 1 < p < N , p < q < p∗ and 0 ≤ µ(·) ∈ L∞(Ω), where p∗ is the critical
Sobolev exponent to p given by

p∗ =
Np

N − p
;

(ii) α ∈ L∞(Ω) with α(x) ≥ 0 for a. a.x ∈ Ω and α 6≡ 0;

(iii) β ∈ L∞(∂Ω) with β(x) ≥ 0 for a. a.x ∈ ∂Ω.

The exponent p∗ denotes the critical exponent of p on the boundary given by

p∗ =
(N − 1)p

N − p
. (1.2)
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If β(x) ≡ 0, then (1.1) reduces to the homogeneous Neumann problem

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
+ α(x)|u|p−2u = λf(x, u) in Ω,(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)
· ν = 0 on ∂Ω.

The divergence operator in (1.1) is known as the so-called double phase operator
which is given by

div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
(1.3)

for functions u defined in an appropriate Musielak-Orlicz Sobolev space W 1,H(Ω),
see Section 2 for its precise definition. If infΩ µ ≥ µ0 > 0 or µ(x) ≡ 0, then (1.3)
becomes the (q, p)-Laplacian or the p-Laplacian, respectively.

The operator (1.3) is related to the two-phase integral functional

ω 7→
∫

Ω

(|∇ω|p + µ(x)|∇ω|q) dx, (1.4)

which was first introduced by Zhikov [21] in order to provide models for strongly
anisotropic materials. It is clear that the integrand of (1.4) has unbalanced growth
and the functional changes its ellipticity on the set where the weight function van-
ishes, so on the set {x ∈ Ω : µ(x) = 0}.

The aim of this paper is to present an existence result of problem (1.1) under
very general assumptions on the perturbation term. The idea is to use an abstract
critical point theorem applied to the energy functional of (1.1) in order to get the
existence of two bounded, nontrivial weak solutions with different energy sign and
located within a precise interval depending on the data.

Our work extends a recent paper of the first three authors published in [7] in
several ways. Indeed, we are dealing with a double phase operator instead of the p-
Laplacian and we can drop the Ambrosetti-Rabinowitz condition of the perturbation
term by weaker assumptions near ±∞. Moreover, we also allow critical growth on
the boundary in contrast to [7]. In order to overcome with this critical term, we
use an equivalent norm on the space W 1,H(Ω) recently obtained in Crespo-Blanco-
Papageorgiou-Winkert [5].

So far, there are only few works for double phase problems with nonlinear bound-
ary condition. Gasiński-Winkert [10] studied the superlinear problem

−div
(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
= f(x, u)− |u|p−2u− µ(x)|u|q−2u in Ω,(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)
· ν = g(x, u) on ∂Ω,

where they showed the existence of constant-sign and sign changing solutions by us-
ing the Nehari manifold technique. Papageorgiou-Rădulescu-Repovš, [15] obtained
several existence results for superlinear and also resonant reactions of the problem

−div
(
a0(x)|∇u|p−2∇u

)
−∆qu+ ξ(x)|u|p−2u = f(x, u) in Ω,

∂u

∂nϑ
+ |u|p−2u = 0 on ∂Ω.

Their proofs are mainly based on Morse theory using the notion of homological lo-
cal linking. Other results for Neumann double phase problems can be found in the
works of Crespo-Blanco-Papageorgiou-Winkert [5] (singular problems), El Manouni-
Marino-Winkert [8] (parametric problems depending on p-Laplacian eigenvalues),
Farkas-Fiscella-Winkert [9] (singular Finsler problems) and Papageorgiou-Vetro-
Vetro [16] (parametric Robin problems). All these papers use different techniques
than ours.
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Finally we mention related works for Neumann or Robin problems involving
the p-Laplacian or the (p, q)-Laplacian applying different techniques as truncation
methods, critical point theory or comparison principles. We refer to the papers
of Bonanno-Candito [1], Bonanno-D’Agùı [2], D’Agùı-Sciammetta [6], Guarnotta-
Marano-Motreanu [11], Motreanu-Sciammetta-Tornatore [13], Papageorgiou-Rădu-
lescu [14], Winkert [20] and the references therein.

The paper is organized as follows. In Section 2 we present some preliminaries
about Musielak-Orlicz Sobolev spaces and equip the space W 1,H(Ω) with an equiv-
alent norm. Furthermore, we present an abstract critical point theorem that we
are going to use in our main proof. In Section 3 we present the main existence
result including several consequence of special cases when f is nonnegative and/or
independent of x. Moreover a concrete example is given.

2. Preliminaries. In this section we state some facts about Musielak-Orlicz Sobo-
lev spaces including an equivalent norm for our function space W 1,H(Ω) and we
recall the main properties of the double phase operator. Moreover, we are going to
state an abstract critical point result due to Bonanno-D’Agùı [3] which is used in
our proofs.

Let Ω ⊆ RN , N ≥ 2, be a bounded domain with Lipschitz boundary. We denote
by Lr(Ω) and Lr(Ω;RN ) the usual Lebesgue spaces endowed with the norm ‖ · ‖r
for any 1 ≤ r ≤ ∞. The corresponding Sobolev space W 1,r(Ω) for 1 < r < ∞ is
equipped with the equivalent norm

‖u‖1,r =

(
‖∇u‖rr +

∫
Ω

α(x)|u|r dx

) 1
r

, (2.5)

where α fulfills hypothesis (H1)(ii). The proof of such result is similar to those
proofs as in Papageorgiou-Winkert [17, Proposition 4.5.34] and [18, Proposition
2.8].

Let 1 < p < ∞ and κ ∈ [1, p∗]. Then the Sobolev embedding theorem ensures
that the embedding W 1,p(Ω) ↪→ Lκ(Ω) is continuous, that is,

‖u‖κ ≤ cκ‖u‖1,p for all u ∈W 1,p(Ω), (2.6)

where cκ > 0 is the best Sobolev constant. If κ < p∗, this embedding is compact
and from Hölder’s inequality we directly obtain that

cκ ≤ cp∗ |Ω|
p∗−κ
p∗κ for κ < p∗, (2.7)

where |Ω| stands for the Lebesgue measure of Ω in RN .
For our further treatment we need the following number

ϑ :=
cpp∗

|Ω|
p
p∗

max
{
‖α‖∞|Ω|, ‖β‖∞|∂Ω|

}
, (2.8)

where α, β satisfy (H1)(ii) and (H1)(iii), respectively, and |∂Ω| denotes the (N−1)-
dimensional Hausdorff surface measure of ∂Ω.

Suppose (H1)(i) hold true, we introduce the nonlinear function H : Ω× [0,∞)→
[0,∞) given by

H(x, t) = tp + µ(x)tq.

Then, denoting by M(Ω) the space of all measurable functions u : Ω → R, the
Musielak-Orlicz space LH(Ω) is given by

LH(Ω) = {u ∈M(Ω) : %H(u) < +∞}
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endowed with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : %H

(u
τ

)
≤ 1
}
.

Here, the modular function %H is defined by

%H(u) :=

∫
Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx.

The Musielak-Orlicz Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. It is known that LH(Ω) and W 1,H(Ω) are both reflexive
Banach spaces and we can equip the space W 1,H(Ω) with the equivalent norm

‖u‖ = inf

{
τ > 0 :

∫
Ω

((
|∇u|
τ

)p
+ µ(x)

(
|∇u|
τ

)q)
dx+

∫
Ω

α(x)

(
|u|
τ

)p
dx

+

∫
∂Ω

β(x)

(
|u|
τ

)p∗
dσ ≤ 1

}
,

see Crespo-Blanco-Papageorgiou-Winkert [5, Proposition 2.2]. Using (2.5) for r = p,
the corresponding modular ρ to ‖ · ‖ is given by

ρ(u) = ‖∇u‖pp + ‖∇u‖qq,µ + ‖u‖pp,α + ‖u‖p∗p∗,β,∂Ω

= ‖u‖p1,p + ‖∇u‖qq,µ + ‖u‖p∗p∗,β,∂Ω for u ∈W 1,H(Ω),
(2.9)

where

Lqµ(Ω) =

{
u ∈M(Ω) :

∫
Ω

µ(x)|u|q dx < +∞
}

is endowed with the seminorm

‖u‖q,µ =

(∫
Ω

µ(x)|u|q dx

) 1
q

and ‖ · ‖p,α as well as ‖ · ‖p∗,β,∂Ω are the seminorms

‖u‖p,α =

(∫
Ω

α(x)|u|p dx

) 1
p

and ‖u‖p∗,β,∂Ω =

(∫
∂Ω

β(x)|u|p∗ dσ

) 1
p∗

.

The following proposition shows the relation between the norm ‖ · ‖ and the
modular function ρ. We refer to Liu-Dai [12, Proposition 2.1] or Crespo-Blanco-
Gasiński-Harjulehto-Winkert [4, Proposition 2.16] for similar proofs of these results.
Let

` := max{q, p∗} (2.10)

with p∗ given in (1.2).

Proposition 2.1. Let hypotheses (H1) be satisfied, let u ∈W 1,H(Ω), let ρ be defined
by (2.9) and let ` be given in (2.10). Then the following hold:

(i) If u 6= 0, then ‖u‖ = λ if and only if ρ(uλ ) = 1;
(ii) ‖u‖ < 1 (resp.> 1, = 1) if and only if ρ(u) < 1 (resp.> 1, = 1);
(iii) If ‖u‖ < 1, then ‖u‖` ≤ ρ(u) ≤ ‖u‖p;
(iv) If ‖u‖ > 1, then ‖u‖p ≤ ρ(u) ≤ ‖u‖`;
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(v) ‖u‖ → 0 if and only if ρ(u)→ 0;
(vi) ‖u‖ → +∞ if and only if ρ(u)→ +∞.

Next, we state some useful embedding results for the spaces LH(Ω) and W 1,H(Ω),
see Crespo-Blanco-Gasiński-Harjulehto-Winkert [4, Proposition 2.16] or Gasiński-
Winkert [10].

Proposition 2.2. Let hypotheses (H1) be satisfied. Then the following embeddings
hold:

(i) LH(Ω) ↪→ Lr(Ω) and W 1,H(Ω) ↪→W 1,r(Ω) are continuous for all r ∈ [1, p];
(ii) W 1,H(Ω) ↪→ Lr(Ω) is continuous for all r ∈ [1, p∗];
(iii) W 1,H(Ω) ↪→ Lr(Ω) is compact for all r ∈ [1, p∗);
(iv) W 1,H(Ω) ↪→ Lr(∂Ω) is continuous for all r ∈ [1, p∗];
(v) W 1,H(Ω) ↪→ Lr(∂Ω) is compact for all r ∈ [1, p∗);

(vi) LH(Ω) ↪→ Lqµ(Ω) is continuous;

(vii) Lq(Ω) ↪→ LH(Ω) is continuous.

Next, we consider the operator A : W 1,H(Ω)→W 1,H(Ω)∗ defined by

〈A(u), v〉 :=

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx

+

∫
Ω

α(x)|u|p−2uv dx+

∫
∂Ω

β(x)|u|p∗−2uv dσ

(2.11)

for all u, v ∈ W 1,H(Ω) with 〈 · , · 〉 being the duality pairing between W 1,H(Ω) and
its dual space W 1,H(Ω)∗. The properties of the operator A : W 1,H(Ω)→W 1,H(Ω)∗

are summarized in the next proposition. The proof is similar to those in Liu-Dai
[12, Proposition 3.1] or Crespo-Blanco-Gasiński-Harjulehto-Winkert [4, Proposition
3.5].

Proposition 2.3. Let hypotheses (H1) be satisfied. Then, the operator A defined
in (2.11) is bounded, continuous, strictly monotone and of type (S+), that is,

un ⇀ u in W 1,H(Ω) and lim sup
n→∞

〈Aun, un − u〉 ≤ 0,

imply un → u in W 1,H(Ω).

Given a Banach space X and its dual space X∗, we say that a functional
ϕ ∈ C1(X) satisfies the Cerami-condition (C-condition for short), if every sequence
{xn}n∈N ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and

(1 + ‖xn‖X)ϕ′(xn)→ 0 in X∗ as n→∞,

admits a strongly convergent subsequence.
Finally, we mention the following abstract critical point result due to Bonanno-

D’Agùı [3, see Theorem 2.1 and Remark 2.2].

Theorem 2.4. Let X be a real Banach space and let Φ, Ψ: X → R be two func-
tionals of class C1 such that inf

X
Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there are

r ∈ R and û ∈ X, with 0 < Φ(û) < r, such that

supu∈Φ−1(]−∞,r]) Ψ(u)

r
<

Ψ(û)

Φ(û)
, (2.12)
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and, for each

λ ∈ Λ :=

]
Φ(û)

Ψ(û)
,

r

supu∈Φ−1(]−∞,r]) Ψ(u)

[
,

the functional Iλ = Φ−λΨ satisfies the C-condition and it is unbounded from below.
Moreover, Φ is supposed to be coercive.

Then, for each λ ∈ Λ, the functional Iλ admits at least two nontrivial critical
points uλ,1, uλ,2 ∈ X such that Iλ(uλ,1) < 0 < Iλ(uλ,2).

3. Main result. In this section we are going to prove that problem (1.1) has
at least two nontrivial, bounded weak solutions. First, we assume the following
hypotheses:

(H2) f : Ω× R→ R is a Carathéodory function such that
(i) there exist κ ∈ (`, p∗) and constants η1, η2 > 0 such that

|f(x, s)| ≤ η1 + η2|s|κ−1

for a. a.x ∈ Ω and for all s ∈ R, where ` is given in (2.10);

(ii) if F (x, s) =
∫ s

0
f(x, t) dt, then

lim
s→±∞

F (x, s)

|s|`
= +∞

uniformly for a. a.x ∈ Ω, where ` is given in (2.10);

(iii) there exists

ζ ∈
(

(κ− p)N
p
, p∗
)

(3.13)

such that

0 < ζ0 ≤ lim inf
s→±∞

f(x, s)s− `F (x, s)

|s|ζ

uniformly for a. a.x ∈ Ω, where ` is given in (2.10).

Remark 3.1. From (H2)(ii) and (H2)(iii) it is easy to see that f(x, ·) is (` − 1)-
superlinear at ±∞. Note that the conditions in (H2)(ii) and (H2)(iii) are weaker
than the Ambrosetti-Rabinowitz condition which is usually supposed in the litera-
ture. The function

f(s) =

|s|
β1−2s if |s| ≤ 1,

|s|q−2s ln(|s|) + |s|β2−2s if 1 < |s|,

where 1 < β1 < p and 1 < β2 < `, see (2.10), fulfills hypotheses (H2) but fails to
satisfy the Ambrosetti-Rabinowitz condition.

The corresponding energy functional Iλ : W 1,H(Ω)→ R related to (1.1) is defined
by

Iλ(u) =
1

p
‖u‖p1,p +

1

q
‖∇u‖qq,µ +

1

p∗
‖u‖p∗p∗,β,∂Ω − λ

∫
Ω

F (x, u) dx

for all u ∈ W 1,H(Ω). It is easy to verify that Iλ ∈ C1(W 1,H(Ω)) and the critical
points of Iλ are the weak solutions of (1.1). Let

Iλ = Φ(u)− λΨ(u) for u ∈W 1,H(Ω),



1292 G. D’AGUÌ, A. SCIAMMETTA, E. TORNATORE AND P. WINKERT

where Φ, Ψ: W 1,H(Ω)→ R are given by

Φ(u) =
1

p
‖u‖p1,p +

1

q
‖∇u‖qq,µ +

1

p∗
‖u‖p∗p∗,β,∂Ω,

Ψ(u) =

∫
Ω

F (x, u) dx

(3.14)

for all u ∈W 1,H(Ω). Clearly we have

〈I ′λ(u), v〉 =

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx+

∫
Ω

α(x)|u|p−2uv dx

+

∫
∂Ω

β(x)|u|p∗−2uv dσ − λ
∫

Ω

f(x, u)v dx,

〈Φ′(u), v〉 =

∫
Ω

(
|∇u|p−2∇u+ µ(x)|∇u|q−2∇u

)
· ∇v dx+

∫
Ω

α(x)|u|p−2uv dx

+

∫
∂Ω

β(x)|u|p∗−2uv dσ,

〈Ψ′(u), v〉 =

∫
Ω

f(x, u)v dx

for all u, v ∈W 1,H(Ω).
The next proposition shows that the energy functional of problem (1.1) fulfills

the C-condition.

Proposition 3.2. Let hypotheses (H1) and (H2) be satisfied. Then the functional
Iλ : W 1,H(Ω)→ R satisfies the C-condition.

Proof. Let {un}n∈N ⊆W 1,H(Ω) be a sequence such that

|Iλ(un)| ≤ c1 for some c1 > 0 and for all n ∈ N, (3.15)

(1 + ‖un‖) I ′λ(un)→ 0 in W 1,H(Ω)∗ as n→∞. (3.16)

From (3.16) we obtain∣∣∣∣〈A(un), h〉 − λ
∫

Ω

f (x, un)hdx

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

(3.17)

for all h ∈W 1,H(Ω) with εn → 0+. If we take h = un ∈W 1,H(Ω) in (3.17), we get

−‖un‖p1,p − ‖∇un‖qq,µ − ‖u‖
p∗
p∗,β,∂Ω + λ

∫
Ω

f(x, un)un dx ≤ εn (3.18)

for all n ∈ N. On the other hand, taking (3.15) into account, it follows that

`

p
‖un‖p1,p +

`

q
‖∇un‖qq,µ +

`

p∗
‖u‖p∗p∗,β,∂Ω − λ

∫
Ω

`F (x, un) dx ≤ `c1, (3.19)

where ` is given in (2.10). Note that p < q ≤ ` and p∗ ≤ `. Using this and adding
(3.18) and (3.19) gives

λ

∫
Ω

(f (x, un)un − `F (x, un)) dx ≤ c2 (3.20)

for some c2 > 0 and for all n ∈ N.
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Hypotheses (H2)(i) and (H2)(iii) imply that we can find c3 ∈ (0, ζ0) and c4 > 0
such that

c3|s|ζ − c4 ≤ f(x, s)s− `F (x, s) (3.21)

for a. a.x ∈ Ω and for all s ∈ R. From (3.21) and (3.20) it follows that

‖un‖ζζ ≤ c5 for some c5 > 0 and for all n ∈ N.
This shows that

{un}n∈N ⊆ L
ζ(Ω) is bounded. (3.22)

It is clear that we may assume ζ < κ < p∗, see (H2)(iii). Hence, there exists
t ∈ (0, 1) such that

1

κ
=

1− t
ζ

+
t

p∗
. (3.23)

From the interpolation inequality (see Papageorgiou-Winkert [17, p. 116]), we obtain
that

‖un‖κ ≤ ‖un‖
1−t
ζ ‖un‖tp∗ for all n ∈ N.

Using this along with (3.22) and the embedding W 1,H(Ω) ↪→ Lp
∗
(Ω), see Proposi-

tion 2.2(ii), yields

‖un‖κκ ≤ c6 ‖un‖
tκ

for all n ∈ N (3.24)

with some c6 > 0. Now we choose h = un ∈W 1,H(Ω) in (3.17) to get

‖un‖p1,p + ‖∇un‖qq,µ + ‖un‖p∗p∗,β,∂Ω − λ
∫

Ω

f(x, un)un dx ≤ εn

for all n ∈ N. From this together with the growth condition in (H2)(i), Proposition
2.1(iii), (iv) and (3.24) it follows that

min
{
‖un‖p, ‖un‖`

}
≤ λ

∫
Ω

f(x, un)un dx+ εn

≤ λc7
[
1 + ‖un‖tκ

]
+ εn

(3.25)

for some c7 > 0 and for all n ∈ N.
Using (3.23) and (3.13) we obtain

tκ =
p∗(κ− ζ)

p∗ − ζ
=

Np(κ− ζ)

Np−Nζ + ζp

<
Np(κ− ζ)

Np−Nζ + (κ− p)Np p
= p < `.

(3.26)

With a view to (3.25) and (3.26) we see that

{un}n∈N ⊆W 1,H(Ω) is bounded.

Hence, we can find a subsequence, not relabeled, such that

un ⇀ u in W 1,H(Ω) and un → u in Lκ(Ω), (3.27)

since κ < p∗, see Proposition 2.2(iii). Choosing h = un − u ∈ W 1,H(Ω) in (3.17),
passing to the limit as n → ∞ and using the convergence properties in (3.27), we
conclude that

lim
n→∞

〈A(un), un − u〉 = 0.
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Finally, by the (S+)-property of the operator A (see Proposition 2.3) we know that
un → u in W 1,H(Ω) which shows the assertion of the proposition.

The main result in this paper reads as follows.

Theorem 3.3. Let hypotheses (H1), (H2) be satisfied and let τ, ω > 0 be two
constants with τ > ω such that

η1τ
1−p +

η2

κ
τκ−p <

1

ϑ|Ω|
·

∫
Ω

F (x, ω) dx

ωp + ωp∗
, (3.28)

where η1, η2, κ and ϑ are given in (H2)(i) and (2.8), respectively. Then, for each

λ ∈ Λ1 :=

ϑ|Ω| pp∗pcpp∗
· ωp + ωp∗∫

Ω

F (x, ω) dx

,
1

pcpp∗ |Ω|
p
N

· 1

η1τ1−p +
η2

κ
τκ−p

 , (3.29)

problem (1.1) has at least two nontrivial bounded weak solutions uλ, vλ ∈ W 1,H(Ω)
such that Iλ(uλ) < 0 < Iλ(vλ).

Proof. We are going to apply Theorem 2.4 in order to show the assertions of the
theorem. First, let Φ and Ψ be the C1-functionals given in (3.14). Due to Proposi-
tion 2.1(iv) it is clear that Φ is coercive and taking hypothesis (H2)(ii) into account,
we see that Iλ is unbounded from below. Obviously, we have

inf
u∈W 1,H(Ω)

Ψ(u) = Ψ(0) = Φ(0).

Now, we fix λ ∈ Λ1 which is possible because of (3.28). Let

r :=
1

p

|Ω|
p
p∗

cpp∗
τp, (3.30)

where cp∗ is the best constant of the embedding W 1,p(Ω) ↪→ Lp
∗
(Ω) and let

û(x) = ω. (3.31)

Clearly, û ∈W 1,H(Ω).
First we are going to show that 0 < Φ(û) < r. From (3.31) and (2.8) we have

that

0 < Φ (û) =
1

p
‖û‖pp,α +

1

p∗
‖û‖p∗p∗,β,∂Ω

≤ ωp

p
‖α‖∞|Ω|+

ωp∗

p∗
‖β‖∞|∂Ω|

≤ 1

p
(ωp + ωp∗) max {‖α‖∞|Ω|, ‖β‖∞|∂Ω|}

=
ϑ|Ω|

p
p∗

pcpp∗
(ωp + ωp∗) .

(3.32)

In order to show Φ(û) < r, with view to (3.30) and (3.32), we have to verify that

ϑ (ωp + ωp∗) < τp. (3.33)



PARAMETRIC ROBIN DOUBLE PHASE PROBLEMS WITH CRITICAL GROWTH 1295

Let us suppose the inequality in (3.33) is not satisfied, so we have

ϑ (ωp + ωp∗) ≥ τp. (3.34)

Using the growth condition of f given in (H2)(i) we easily obtain that∫
Ω

F (x, ω) dx ≤
∫

Ω

(
η1ω +

η2

κ
ωκ
)

dx =
(
η1ω +

η2

κ
ωκ
)
|Ω|. (3.35)

From τ > ω along with (3.34) and (3.35) it follows that

η1τ
1−p +

η2

κ
τκ−p =

η1τ + η2
κ τ

κ

τp
≥

η1τ + η2
κ τ

κ

ϑ (ωp + ωp∗)
≥
|Ω|
(
η1ω + η2

κ ω
κ
)

ϑ|Ω| (ωp + ωp∗)

≥

∫
Ω

F (x, ω) dx

ϑ|Ω| (ωp + ωp∗)
,

which is a contradiction to (3.28). Hence, (3.33) is fulfilled and so we have 0 <
Φ(û) < r.

Next, we have to show that (2.12) is satisfied for r and û defined in (3.30) and
(3.31), respectively.

First, from the representation of r in (3.30), we have

τ =

(
cpp∗pr

|Ω|
p
p∗

) 1
p

. (3.36)

Note that

Φ−1 (]−∞, r[) ⊆
{
u ∈W 1,H(Ω) : ‖u‖1,p ≤ (pr)

1
p

}
. (3.37)

Applying the growth condition in (H2)(i) along with (2.7), (2.6), (3.37) as well as
(3.36) yields

supu∈Φ−1(]−∞,r]) Ψ(u)

r

≤
supu∈Φ−1(]−∞,r])

(
η1‖u‖1 + η2

κ ‖u‖
κ
κ

)
r

≤
supu∈Φ−1(]−∞,r])

(
η1cp∗ |Ω|

p∗−1
p∗ ‖u‖1,p + η2

κ c
κ
p∗ |Ω|

p∗−κ
p∗ ‖u‖κ1,p

)
r

≤
η1cp∗ |Ω|

p∗−1
p∗ (pr)

1
p + η2

κ c
κ
p∗ |Ω|

p∗−κ
p∗ (pr)

κ
p

r

= pcpp∗ |Ω|
p∗−p
p∗

η1

(
cpp∗pr

|Ω|
p
p∗

) 1−p
p

+
η2

κ

(
cpp∗pr

|Ω|
p
p∗

)κ−p
p


= pcpp∗ |Ω|

p
N

[
η1τ

1−p +
η2

κ
τκ−p

]
.

(3.38)
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Combining (3.38), (3.28) and (3.32) it follows that

supu∈Φ−1(]−∞,r]) Ψ(u)

r
≤ pcpp∗ |Ω|

p
N

[
η1τ

1−p +
η2

κ
τκ−p

]

< pcpp∗ |Ω|
p
N

 1

ϑ|Ω|
·

∫
Ω

F (x, ω) dx

ωp + ωp∗



=

∫
Ω

F (x, ω) dx

ϑ|Ω|
p
p∗

pcp
p∗

(ωp + ωp∗)

≤ Ψ (û)

Φ (û)
.

Hence, (2.12) is satisfied.
Since Iλ satisfies the C-condition, see Proposition 3.2, we are in the position to

apply Theorem 2.4 and get the existence of at least two nontrivial weak solutions
uλ, vλ ∈ W 1,H(Ω) of problem (1.1) such that Iλ(uλ) < 0 < Iλ(vλ). The bounded-
ness of uλ, vλ follows from Gasiński-Winkert [10, Theorem 3.1]. This finishes the
proof.

Let us now mention some important special cases of Theorem 3.3. When f is
nonnegative we have the following corollary.

Corollary 3.4. Let hypotheses (H1), (H2) be satisfied, where in addition we assume
that f(x, s) ≥ 0 for a. a.x ∈ Ω and for all s ∈ R. Moreover, let τ, ω > 0 be two
constants with τ > ω such that

η1τ
1−p +

η2

κ
τκ−p <

1

ϑ|Ω|
·

∫
Ω

F (x, ω) dx

ωp + ωp∗
,

where η1, η2, κ and ϑ are given in (H2)(i) and (2.8), respectively. Then, for each λ ∈
Λ1, where Λ1 is given in (3.29), problem (1.1) has at least two nontrivial nonnegative
bounded weak solutions uλ, vλ ∈W 1,H(Ω) such that Iλ(uλ) < 0 < Iλ(vλ).

The proof is a direct consequence of Theorem 3.3 and the fact that we can test
the weak formulation of (1.1) with the negative part of the function to obtain its
nonnegativity.

When f is independent of x, we get the following corollary.

Corollary 3.5. Assume (H1) and let f : R→ R be a continuous function such that
(H2) is satisfied. Moreover, let τ, ω > 0 be two constants with τ > ω such that

η1τ
1−p +

η2

κ
τκ−p <

1

ϑ
· F (ω)

ωp + ωp∗
, (3.39)

where η1, η2, κ and ϑ are given in (H2)(i) and (2.8), respectively. Then, for each

λ ∈ Λ2 :=

 ϑ

pcpp∗ |Ω|
p
N

· ω
p + ωp∗

F (ω)
,

1

pcpp∗ |Ω|
p
N

· 1

η1τ1−p +
η2

κ
τκ−p

 ,
problem (1.1) has at least two nontrivial bounded weak solutions uλ, vλ ∈ W 1,H(Ω)
such that Iλ(uλ) < 0 < Iλ(vλ). If f is in addition nonnegative, then uλ, vλ ≥ 0.
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Next, we replace (3.39) by a weaker condition on F near zero.

Corollary 3.6. Assume (H1) and let f : R→ R be a continuous function such that
(H2) holds. Moreover, suppose that

lim sup
t→0+

F (t)

tp
= +∞. (3.40)

Then, for each

λ ∈ Λ3 =

0,
1

pcpp∗ |Ω|
p
N

· supτ>0

1

η1τ1−p +
η2

κ
τκ−p

 ,
problem (1.1) has at least two nontrivial bounded weak solutions uλ, vλ ∈W 1,H(Ω)
such that Iλ(uλ) < 0 < Iλ(vλ). If f is in addition nonnegative, then uλ, vλ ≥ 0.

Proof. Fix λ ∈ Λ3, there exists τ > 0 such that

λ <
1

pcpp∗ |Ω|
p
N

· 1

η1τ1−p +
η2

κ
τκ−p

.

Taking (3.40) into account, we see that

lim sup
t→0+

F (t)

tp + tp∗
= +∞,

which implies the existence of ω ∈ (0, τ) such that

1

λ
<
pcpp∗ |Ω|

p
N

ϑ
· F (ω)

ωp + ωp∗
.

Thus, we can apply Corollary 3.5 in order to get the assertion.

Example 3.7. Let p = 2, N = 3 and q = 4, then 1 < p < N , p < q < p∗ = 6, p∗ = 4

and ` = max {q, p∗} = 4. Let Ω = B
(

0,
(

2
3

) 5
6

)
⊂ R3. Then

∣∣∣B (0,
(

2
3

) 5
6

)∣∣∣ =
2

11
3

3
5
3

π.

We consider the function

f(t) =

{
(1 + ln 2)

√
t for 0 ≤ t < 1,

t3 ln(1 + t) + t4 for t ≥ 1.

Then we have

F (t) =

∫ t

0

f(s) ds

=

∫ 1

0

(1 + ln 2)
√
sds+

∫ t

0

[
s3 ln(1 + s) + s4

]
ds

=
t4 − 1

4
ln(1 + t)− t

48

(
3t3 − 4t2 + 6t− 12

)
+

81

80
+

2

3
ln 2.

For each

λ ∈

]
0,

3
49
12 · π 5

6

29

[
,

problem (1.1) admits at least two nonnegative, nontrivial bounded weak solutions.
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If fact, taking η1 = η2 = 2, κ = 5 and ζ = 5 we observe that (H2) and (3.40)
hold. Moreover, owing to Talenti [19], one has that

cp∗ ≤ π−
1
2 3−

1
2

Γ

(
5

2

)
Γ(3)

Γ
(

3
2

)
Γ
(

5
2

)


1
4

=
2

3
1
2 · π 3

4

.

Therefore
1

pcpp∗ |Ω|
p
N

sup
ξ>0

1

η1ξ1−p +
η2

k
ξ−p

=
3

49
12 · 5 3

4 · π 5
6

29
.

Then, we can apply Corollary 3.6 and get the required result.

Acknowledgments. The first three authors are members of the Gruppo Nazionale
per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the
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