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Abstract. In this paper, we deal with a problem driven by a logarithmic

double phase operator with variable exponent and a nonlinearity on the right-

hand side which also depends on the gradient of the solution. Under very
general structure conditions, following a topological approach based on the

use of pseudomonotone operators, we establish the existence of a nontrivial
weak solutions for the problem under consideration. Moreover, imposing more

restrictive conditions on the nonlinearity, we are able to provide the uniqueness

of the solution. Finally, we prove the boundedness, closedness and compactness
of the related solution set to our problem.

1. Introduction. Let N ≥ 2 and Ω ⊆ RN be a bounded domain with Lipschitz
boundary ∂Ω. In this paper, we focus on the following problem:

− divA(u) = f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

where divA denotes the logarithmic double phase operator with variable exponents

defined for u ∈ W
1,Hlog

0 (Ω) (the appropriate Musielak-Orlicz Sobolev space, see
Section 2) by

divA(u) := div
(
|∇u|p(x)−2∇u

+µ(x)

[
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

]
|∇u|q(x)−2∇u

)
. (1.2)

Additionally, the exponents as well as the weight function satisfy the following
conditions:

(H1) p, q ∈ C(Ω) are such that

1 < p(x) < N, p(x) < q(x) < p∗(x) :=
Np(x)

N − p(x)

for all x ∈ Ω and 0 ≤ µ(·) ∈ L∞(Ω).
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The nonlinearity f : Ω × R × RN → R is a Carathéodory function which satisfies
general growth and coercivity structure conditions, see the precise assumptions in
(H2) and (H4).

We point out that a first interesting phenomenon in our work is the presence
of the logarithmic double phase operator divA which was recently introduced by
Arora-Crespo-Blanco-Winkert in [2]. Such operator is closely connected to the
variable exponent double phase operator

div
(
|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u

)
(1.3)

which exhibits only a power-law type of growth in each of the addends. We empha-
size that the first idea that comes up if one wants to consider other types of growth
is to modify power-laws with a logarithm. Operators of type (1.3) have their origin
in the study of functionals of the form

u 7→
∫
Ω

(
|∇u|p(x) + µ(x)|∇u|q(x)

)
dx. (1.4)

Such functionals are characterized by a strongly non-uniform ellipticity at the points
where µ vanishes. Therefore, they are useful in order to describe the behavior of
inhomogeneous materials whose strengthening properties significantly change with
the point. We recall that functionals of type (1.4) with constant exponents p, q
have been considered by Marcellini [17] and Zhikov [24] in the study of homoge-
nization and elasticity. It is also relevant in the context of duality theory and of the
Lavrentiev gap phenomenon.

Note that the functional

ω →
∫
Ω

(|Dω|p + σ(x)|Dω|p log(e+ |Dω|)) dx, (1.5)

with 1 < p < ∞ and 0 ≤ σ(·) ∈ C0,α(Ω) was considered by Baroni-Colombo-
Mingione in [3], in which they prove the local Hölder continuity of the gradient
of local minimizers of (1.5). The local Hölder continuity of the gradients of local
minimizers of the functional

ω 7→
∫
Ω

(|Dω| log(1 + |Dω|) + σ(x)|Dω|q) dx (1.6)

has been proved by De Filippis-Mingione [4] in case 0 ≤ σ(·) ∈ C0,α(Ω) and 1 <
q < 1 + α

n with Ω ⊂ Rn. Note that (1.6) originates from the following functional
with nearly linear growth

w 7→
∫
Ω

|Dw| log(1 + |Dw|) dx (1.7)

studied in the works of Fuchs-Mingione [9] and Marcellini-Papi [18]. Functionals as
in (1.7) occur in the theory of plasticity with logarithmic hardening, see the paper
of Seregin-Frehse [21] and the monograph of Fuchs-Seregin [10].

Another interesting feature of problem (1.1) is the nonlinearity on the right-
hand side which depends on the gradient of the solutions. Such functions are called
convection. The presence of the gradient-dependence is crucial in the choice of a
working strategy, as it inhibits the use of variational methods. For way of this, we
use a topological approach in order to get our results.

To the best of our knowledge this is the first work which combines the loga-
rithmic double phase operator given in (1.2) with a convection term. For exis-
tence results on equations with convection term and different involved operators we
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mention the recent papers of Albalawi-Alharthi-Vetro [1] (parametric (p(x), q(x))-
Laplace type problems), Faria-Miyagaki-Motreanu [7] (positive solutions for prob-
lems with the (p, q)-Laplacian), Figueiredo-Madeira [8] (positive maximal and mini-
mal solutions for nonhomogeneous equations), Gasiński-Papageorgiou [12] (positive
smooth solutions for nonhomogeneous equations), Gasiński-Winkert [13] (double
phase problems with constant exponents), Marano-Winkert [16] (Neumann (p, q)-
problems), Papageorgiou-Vetro-Vetro [19] (singular problems), Vetro [22] (p(x)-
Kirchhoff type problem) and Vetro-Winkert [23] (parametric anisotropic (p, q)-
equations). If p(x) ≡ constant and µ(x) ≡ 0, the logarithmic double phase operator
reduces to the classical p-Laplacian. In this direction we mention the recent survey
artical about different existence results of Guarnotta-Livrea-Marano [14].

The main objective of this paper is to provide existence results for problem (1.1)
under very general structure conditions, see Theorems 3.1 and 3.2 in Section 3. We
point out that in order to do this, a key role is played by the surjectivity result
for pseudomonotone operators given in Theorem 2.5 in Section 2. In addition, we
present uniqueness results for problem (1.1) in the case p = 2, see Theorems 4.1
and 4.2 in Section 4. Finally, we study the solution set to the problem (1.1) which

turns out to be bounded, closed and compact in W
1,Hlog

0 (Ω), see Lemmas 5.1, 5.2,
5.3 and 5.4 in Section 5.

2. Mathematical background. The function space framework for the analysis
of problem (1.1) is provided by the so-called Musielak-Orlicz Sobolev space. Con-
sequently, in this section we collect some basic facts from the theory of such spaces.
One can find these topics in the books of Diening-Harjulehto-Hästö-Růžička [5] and
Harjulehto-Hästö [15]. Also, we refer to the recent paper of Arora-Crespo-Blanco-
Winkert [2].

Let Ω ⊆ RN (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω and let
r ∈ C(Ω) be such that r(x) > 1 for all x ∈ Ω. Here, we put

r− := min
x∈Ω

r(x) and r+ := max
x∈Ω

r(x)

and we write r′(·) for the conjugate variable exponent to r(·), that is, we have

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω.

Let M(Ω) be the set of all measurable functions u : Ω → R. Then, we denote by
Lr(·)(Ω) the usual variable exponent Lebesgue space, that is,

Lr(·)(Ω) =

{
u ∈ M(Ω): ϱr(·)(u) :=

∫
Ω

|u|r(x) dx < +∞
}

endowed with the Luxemburg norm

∥u∥r(·) = inf

{
α > 0: ϱr(·)

(
u

α

)
≤ 1

}
.

Such norm makes Lr(·)(Ω) a separable, uniformly convex and hence reflexive Banach

space with dual space given by Lr′(·)(Ω). In addition, we emphasize that the norm
∥ · ∥r(·) and its modular ϱr(·) are related as follows.

Proposition 2.1. Let r ∈ C(Ω) be such that r(x) > 1 for all x ∈ Ω. Also, let
{un, u}n∈N ⊆ Lr(·)(Ω). Then, we have:

(i) ∥u∥r(·) = a ⇔ ϱr(·)
(
u
a

)
= 1 (a > 0);
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(ii) ∥u∥r(·) < 1 (resp. = 1, > 1) ⇔ ϱr(·)(u) < 1 (resp. = 1, > 1);

(iii) ∥u∥r(·) < 1 ⇒ ∥u∥r+r(·) ≤ ϱr(·)(u) ≤ ∥u∥r−r(·);
(iv) ∥u∥r(·) > 1 ⇒ ∥u∥r−r(·) ≤ ϱr(·)(u) ≤ ∥u∥r+r(·);
(v) ∥un∥r(·) → 0 (resp. → +∞) ⇔ ϱr(·)(un) → 0 (resp. → +∞).

Also, we know that the Hölder-type inequality∫
Ω

|uv|dx ≤
[
1

r−
+

1

(r′)
−

]
∥u∥r(·) ∥v∥r′(·)

holds for all u ∈ Lr(·)(Ω) and for all v ∈ Lr′(·)(Ω). Further, given r1, r2 ∈ C(Ω),
with 1 < r1(x) ≤ r2(x) for all x ∈ Ω, we have that the embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω)

is continuous. Using the Lebesgue space Lr(·)(Ω), we can define the variable expo-
nent Sobolev space W 1,r(·)(Ω) by

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω): |∇u| ∈ Lr(·)(Ω)

}
equipped with the norm

∥u∥1,r(·) = ∥u∥r(·) + ∥∇u∥r(·),

where ∥∇u∥r(·) = ∥ |∇u| ∥r(·). Moreover, we write W
1,r(·)
0 (Ω) by the completion of

C∞
0 (Ω) in W 1,r(·)(Ω). Recall that W 1,r(·)(Ω) and W

1,r(·)
0 (Ω) are uniformly convex,

separable and reflexive Banach spaces and further we know that the Poincaré in-

equality is valid for W
1,r(·)
0 (Ω). So, we can equip W

1,r(·)
0 (Ω) with the equivalent

norm given by

∥u∥1,r(·),0 := ∥∇u∥r(·) for all u ∈ W
1,r(·)
0 (Ω).

Let now hypothesis (H1) be satisfied. Then, we consider the nonlinear function
Hlog : Ω× [0,+∞) → [0,+∞) defined by

Hlog(x, t) = tp(x) + µ(x)tq(x) log(e+ t)

for all x ∈ Ω and for all t ≥ 0, where e stands for Euler’s number. We point out
that Hlog(·, t) is measurable for all t≥ 0, Hlog(x, 0)= 0 and further Hlog(x, t)> 0
for all t > 0. Moreover, we can easily check that Hlog satisfies the ∆2-condition.
Consequently, we have that the corresponding Musielak-Orlicz space LHlog(Ω) is
given by

LHlog(Ω) =
{
u ∈ M(Ω): ϱHlog

(u) < +∞
}

equipped with the Luxemburg norm

∥u∥Hlog
:= inf

{
β > 0: ϱHlog

(
u

β

)
≤ 1

}
,

where ϱHlog
(·) denotes the associated modular defined by

ϱHlog
(u) :=

∫
Ω

Hlog(x, |u|) dx =

∫
Ω

(
|u|p(x) + µ(x)|u|q(x) log(e+ |u|)

)
dx.

We remark that LHlog(Ω) is a separable, reflexive Banach space and in addition the
modular ϱHlog

is closely related to the norm ∥ · ∥Hlog
, see [2, Proposition 3.4].
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Proposition 2.2. Let hypothesis (H1) be satisfied. Then the following hold:

(i) ∥u∥Hlog
< 1 (resp. > 1,= 1) if and only if ϱHlog

(u) < 1 (resp. > 1,= 1);

(ii) min{∥u∥p
−

Hlog
, ∥u∥q

++k
Hlog

} ≤ ϱHlog
(u) ≤ max{∥u∥p

−

Hlog
, ∥u∥q

++k
Hlog

}, where k = e
e+t0

with t0 being the only positive solution of t0 = e log(e+ t0);
(iii) ∥u∥Hlog

→ 0 if and only if ϱHlog
(u) → 0;

(iv) ∥u∥Hlog
→ +∞ if and only if ϱHlog

(u) → +∞.

Next, using the space LHlog(Ω), we introduce the Musielak-Orlicz Sobolev space
W 1,Hlog(Ω) by

W 1,Hlog(Ω) =
{
u ∈ LHlog(Ω): |∇u| ∈ LHlog(Ω)

}
endowed with the norm

∥u∥1,Hlog
:= ∥u∥Hlog

+ ∥∇u∥Hlog
,

where as usual ∥∇u∥Hlog
:= ∥ |∇u| ∥Hlog

. Also, we write W
1,Hlog

0 (Ω) by the comple-

tion of C∞
0 (Ω) in W 1,Hlog(Ω). From Arora-Crespo-Blanco-Winkert [2, Propositions

3.6, 3.7 and 3.9] we see that W 1,Hlog(Ω) and W
1,Hlog

0 (Ω) are separable, reflexive
Banach spaces satisfying the following embeddings.

Proposition 2.3. Let hypothesis (H1) be satisfied. Then the following hold:

(i) W 1,Hlog(Ω) ↪→ W 1,p(·)(Ω) and W
1,Hlog

0 (Ω) ↪→ W
1,p(·)
0 (Ω) are continuous;

(ii) W 1,Hlog(Ω) ↪→ Lm(·)(Ω) and W
1,Hlog

0 (Ω) ↪→ Lm(·)(Ω) are compact for m ∈
C(Ω) with 1 ≤ m(x) < p∗(x) for all x ∈ Ω;

(iii) W 1,Hlog(Ω) ↪→ LHlog(Ω) is compact and there exists a constant c̄ > 0 such
that

∥u∥Hlog
≤ c̄ ∥∇u∥Hlog

for all u ∈ W
1,Hlog

0 (Ω).

Thus, according to Proposition 2.3 (iii), we can take in W
1,Hlog

0 (Ω) the equivalent
norm given by

∥u∥ := ∥∇u∥Hlog
for all u ∈ W

1,Hlog

0 (Ω).

In the sequel, given a Banach space X, we denote by X∗ its dual space and we
use ⟨ · , · ⟩ in order to indicate the dual pairing between X and X∗. Now, let

A : W
1,Hlog

0 (Ω) → [W
1,Hlog

0 (Ω)]∗ be the nonlinear operator defined by

⟨A(u), v⟩ :=
∫
Ω

|∇u|p(x)−2∇u · ∇v dx

+ µ(x)

[
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

]
|∇u|q(x)−2∇u · ∇v dx (2.1)

for all u, v ∈ W 1,Hlog(Ω). Such operator has remarkable properties that we summa-
rize in the next proposition, see Arora-Crespo-Blanco-Winkert [2, Theorem 4.4].

Proposition 2.4. Let hypothesis (H1) be satisfied. Then, the operator A is bounded
(that is, it maps bounded sets into bounded sets), continuous, strictly monotone,
coercive, that is,

lim
∥u∥→+∞

⟨A(u), u⟩
∥u∥

= +∞,
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and also of (S+)-type, that is,

un ⇀ u in W
1,Hlog

0 (Ω) and lim sup
n→+∞

⟨A(un), un − u⟩ ≤ 0

imply un → u in W
1,Hlog

0 (Ω).

We conclude this section by recalling some properties of pseudomonotone opera-
tors which will be needed later. An operator B : X → X∗ with X being a reflexive
Banach space, is called pseudomonotone if un ⇀ u in X and lim supn→∞⟨Bun, un−
u⟩ ≤ 0 imply

lim inf
n→∞

⟨Bun, un − v⟩ ≥ ⟨Bu, u− v⟩ for all v ∈ X.

If the operator B : X → X∗ is bounded, then the definition of pseudomonotonicity
is equivalent to un ⇀ u in X and lim supn→∞⟨Bun, un − u⟩ ≤ 0 imply Bun ⇀ Bu
and ⟨Bun, un⟩ → ⟨Bu, u⟩. We are going to use this equivalent condition for bounded
operators.

We also mention the following notable surjectivity result for pseudomonotone
operators, see, for example, Papageorgiou-Winkert [20, Theorem 6.1.57]. In the
next section, it will be a fundamental tool in order to prove the existence of solutions
for problem (1.1).

Theorem 2.5. Let X be a real, reflexive Banach space, let B : X → X∗ be a
pseudomonotone, bounded, and coercive operator, and b ∈ X∗. Then, a solution of
the equation Bu = b exists.

Finally, we recall the following lemma by Gasiński–Papageorgiou [11, Lemma
2.2.27].

Lemma 2.6. Let X and Y be Banach spaces such that X ⊂ Y , the embedding
X ↪→ Y is continuous and X is dense in Y . Then, we have that:

(i) the embedding Y ∗ ↪→ X∗ is continuous;
(ii) if X is reflexive, then Y ∗ is dense in X∗.

3. Existence results. In this section, we present our existence results. Precisely,
we prove the existence of at least one weak solution for problem (1.1) under very
general structure conditions. We point out that our strategy is based on the use of
the properties of pseudomonotone operators. In particular, a key role in order to
obtain these results is played by Theorem 2.5.

First, we recall that u ∈ W
1,Hlog

0 (Ω) is a weak solution of problem (1.1) if∫
Ω

|∇u|p(x)−2∇u · ∇v dx

+

∫
Ω

µ(x)

[
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

]
|∇u|q(x)−2∇u · ∇v dx

=

∫
Ω

f(x, u,∇u) v dx (3.1)

is satisfied for all v ∈ W
1,Hlog

0 (Ω).
We suppose the following assumptions on the reaction term f .

(H2) f : Ω × R × RN → R is a Carathéodory function such that f(·, 0, 0) ̸= 0 and
the following hold:
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(i) there exists γ1 ∈ Lℓ′(·)(Ω) with 1 < ℓ(x) < p∗(x) for all x ∈ Ω such that

|f(x, t, ξ)| ≤ c1

(
γ1(x) + |t|ℓ(x)−1 + |ξ|

p(x)

ℓ′(x)

)
for some c1 > 0, for a.a.x ∈ Ω, for all t ∈ R and for all ξ ∈ RN ;

(ii) there exist γ2 ∈ L1(Ω) and τ ∈ C(Ω) with 1 < τ(x) ≤ τ+ < p− such that

f(x, t, ξ) t ≤ γ2(x) + c2|t|τ(x) + c3|ξ|p(x)

for some c2 > 0 and 0 < c3 < 1, for a.a.x ∈ Ω, for all t ∈ R and for all
ξ ∈ RN .

Now, we are in the position to present our first existence result.

Theorem 3.1. Let hypotheses (H1) and (H2) be satisfied. Then, problem (1.1) has

at least one nontrivial weak solution u ∈ W
1,Hlog

0 (Ω).

Proof. We are going to apply Theorem 2.5 and introduce first a suitable operator

B : W
1,Hlog

0 (Ω) → [W
1,Hlog

0 (Ω)]∗ as in the theorem. For this purpose, let ℓ ∈ C(Ω) be
as given in hypothesis (H2)(i). According to Proposition 2.3 (ii), we have the com-

pact embedding W
1,Hlog

0 (Ω) ↪→ Lℓ(·)(Ω). Next, let N ∗
f : W

1,Hlog

0 (Ω) ⊂ Lℓ(·)(Ω) →
Lℓ′(·)(Ω) be the Nemytskij operator associated to f , that is, N ∗

f is such that

N ∗
f (u) := f(·, u(·),∇u(·)) for all u ∈ W

1,Hlog

0 (Ω).

Also, let i∗ : Lℓ′(·)(Ω) → [W
1,Hlog

0 (Ω)]∗ be the adjoint operator corresponding to the

embedding W
1,Hlog

0 (Ω) ↪→ Lℓ(·)(Ω). We emphasize that, due to hypothesis (H2)(i),
the operator N ∗

f is well-defined, bounded and continuous. In addition, Lemma
2.6 guarantees that i∗ is continuous. Keeping this in mind, we conclude that the
operator Nf := i∗ ◦N ∗

f is bounded and continuous. Now, we focus on the operator

B : W
1,Hlog

0 (Ω) → [W
1,Hlog

0 (Ω)]∗ defined by

B(u) := A(u)−Nf (u), (3.2)

where A is as given in (2.1). As Nf is bounded and continuous, according to
Proposition 2.4, we deduce that B is bounded and continuous as well. Therefore, in
order to apply Theorem 2.5, we only need to prove that B is pseudomonotone and
coercive.

We start showing the pseudomonotonicity of B. To this end, we consider a

sequence {un}n∈N ⊂ W
1,Hlog

0 (Ω) such that

un ⇀ u in W
1,Hlog

0 (Ω) and lim sup
n→+∞

⟨B(un), un − u⟩ ≤ 0. (3.3)

As {un}n∈N converges weakly in W
1,Hlog

0 (Ω), we have that {un}n∈N is bounded in
its norm. Hence, we deduce that the sequence {N ∗

f (un)}n∈N is bounded. Also, as

ℓ(x) < p∗(x) for all x ∈ Ω (see hypothesis (H1)), with a view to Proposition 2.3 (ii),
we see that

un → u in Lℓ(·)(Ω).

Now, using this fact along with the Hölder’s inequality, we derive that∣∣∣∣∫
Ω

f(x, un,∇un)(un − u) dx

∣∣∣∣ ≤ 2∥N ∗
f (un)∥ℓ′(·)∥un − u∥ℓ(·)
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≤ 2 sup
n∈N

∥N ∗
f (un)∥ℓ′(·)∥un − u∥ℓ(·)

→ 0 as n → +∞. (3.4)

This, according to (3.3), gives

lim sup
n→+∞

⟨B(un), (un − u)⟩ = lim sup
n→+∞

⟨A(un), (un − u)⟩ ≤ 0.

Taking into account that the operator A is of (S+)-type (see Proposition 2.4), we

conclude that un → u in W
1,Hlog

0 (Ω). This along with the fact that the operator B
is continuous yields

B(un) → B(u) in [W
1,Hlog

0 (Ω)]∗.

Therefore, we have shown that B is a pseudomonotone operator.
Next, we prove that B is coercive, that is, we are going to show that

lim
∥u∥→+∞

⟨B(u), u⟩
∥u∥

= +∞.

Using hypothesis (H2)(ii) we get that

⟨B(u), u⟩ =
∫
Ω

|∇u|p(x) dx

+

∫
Ω

µ(x)

[
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

]
|∇u|q(x) dx

−
∫
Ω

f(x, u,∇u)udx

≥ ϱHlog
(∇u)−

∫
Ω

γ2(x) dx− c2

∫
Ω

|u|τ(x) dx− c3

∫
Ω

|∇u|p(x) dx

≥ (1− c3) ϱHlog
(∇u)−

∫
Ω

γ2(x) dx− c2

∫
Ω

|u|τ(x) dx.

Now, we recall that Proposition 2.2 (ii) gives us

ϱHlog
(∇u) ≥ min{∥∇u∥p

−

Hlog
, ∥∇u∥q

++1
Hlog

} = min{∥u∥p
−
, ∥u∥q

++1}.

Also, according to Proposition 2.1 (iii), (iv), we have that

ϱτ(·) ≤ max{∥u∥τ
−

τ(·), ∥u∥
τ+

τ(·)}.

Further, since 1 < τ(x) < p∗(x) (see hypothesis (H1)), from Proposition (2.3) (ii)

we see that the embedding W
1,Hlog

0 (Ω) ↪→ Lτ(·)(Ω) is compact. Keeping this in

mind, for u ∈ W
1,Hlog

0 (Ω) with ∥u∥ > 1, we have

⟨B(u), u⟩ ≥ (1− c3)∥u∥p
−
− ∥γ2∥1 − c2 max

{
∥u∥τ

−

τ(·), ∥u∥
τ+

τ(·)

}
≥ (1− c3)∥u∥p

−
− ∥γ2∥1 − C ∥u∥τ

+

(3.5)

for some C > 0. Hence, as τ+ < p− and 0 < c3 < 1 due to hypothesis (H2)(ii), we
conclude that B is coercive. Then, we can use Theorem 2.5 and deduce that B is

surjective. Consequently, there exists u ∈ W
1,Hlog

0 (Ω) so that B(u) = 0. According
to (3.1) and (3.2), the function u turns out to be a nontrivial weak solution of
problem (1.1). Therefore, the claim is proved.

Next, we consider the following additional monotonicity condition on p.
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(H3) There exists ξ0 ∈ RN \ {0} so that for all x ∈ Ω the function px : Ωx → R
defined by

px(z) := p(x+ zξ0)

is monotone, whereby Ωx = {z ∈ R : x+ z ξ0 ∈ Ω}.
A function p ∈ C(Ω) satisfying (H3) can be given, for example, by

p((x1, x2)) := 2 + x2 for all (x1, x2) ∈ Ω,

where Ω is a bounded domain of R2 contained in the first quadrant.
Note that hypothesis (H3), according to Fan–Zhang–Zhao [6, Theorem 3.3], guar-

antees that

λ̃ := inf
u∈W

1,p(·)
0 (Ω)\{0}

∫
Ω
|∇u|p(x) dx∫

Ω
|u|p(x) dx

> 0. (3.6)

Then, using λ̃ > 0, we can make the following assumption on the Carathéodory
function f : Ω× R× RN → R.
(H4) There exists γ̄2 ∈ L1(Ω) such that

f(x, t, ξ) t ≤ γ̄2(x) + c̄2 λ̃ |t|p(x) + c̄3|ξ|p(x)

for some c̄2, c̄3 > 0, for a.a.x ∈ Ω, for all t ∈ R and for all ξ ∈ RN with

c̄2 + c̄3 < 1.

Now, we are ready to establish our second existence result.

Theorem 3.2. Let hypotheses (H1), (H2)(i), (H3) and (H4) be satisfied. Then,

problem (1.1) has at least one nontrivial weak solution in W
1,Hlog

0 (Ω).

Proof. As done in proof of Theorem 3.1, we consider the operator B : W
1,Hlog

0 (Ω) →
[W

1,Hlog

0 (Ω)]∗ defined by

B(u) := A(u)−Nf (u),

with A as given in (2.1). Then, following the proof of Theorem 3.1, we are able to
derive that such operator is bounded and pseudomonotone.

Now, in order to show that B is also coercive, we recall that, due to (3.6), we
know that

λ̃

∫
Ω

|u|p(x) dx ≤
∫
Ω

|∇u|p(x) dx for all u ∈ W
1,p(·)
0 (Ω).

Using this fact along with hypothesis (H4), we get that

⟨B(u), u⟩ =
∫
Ω

|∇u|p(x) dx

+

∫
Ω

µ(x)

[
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

]
|∇u|q(x) dx

−
∫
Ω

f(x, u,∇u)udx

≥ ϱHlog
(∇u)−

∫
Ω

γ̄2(x) dx− c̄2 λ̃

∫
Ω

|u|p(x) dx− c̄3

∫
Ω

|∇u|p(x) dx

≥ (1− c̄3) ϱHlog
(∇u)− ∥γ̄2(x)∥1 − c̄2

∫
Ω

|∇u|p(x) dx
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= (1− c̄2 − c̄3) ϱHlog
(∇u)− ∥γ̄2(x)∥1. (3.7)

Hence, taking into account that Proposition 2.2 (v) guarantees that

ϱHlog
(∇u) → +∞ as ∥u∥ → +∞

and (1 − c̄2 − c̄3) > 0 due to hypothesis (H4), we conclude that B is coercive. So,
we can now apply Theorem 2.5 which shows the assertion of the theorem.

4. Uniqueness results. In the sequel, we denote by λ1,2 the first eigenvalue of the
Dirichlet eigenvalue problem for the Laplace differential operator. We recall that
such eigenvalue is positive, isolated, simple and in addition it can be variationally
characterized through

λ1,2 = inf

{
∥∇u∥22
∥u∥22

: u ∈ W 1,2
0 (Ω), u ̸= 0

}
. (4.1)

Our aim is to provide uniqueness results for problem (1.1). For this purpose, we need
stronger assumptions on the reaction term f . Precisely, we suppose the following
additional conditions on f :

(H5) (i) there exists a constant c4 > 0 such that

(f(x, t, ξ)− f(x, s, ξ))(t− s) ≤ λ1,2 c4 |t− s|2

for a.a.x ∈ Ω, for all t, s ∈ R and for all ξ ∈ RN ;

(ii) there exists γ3 ∈ L1(Ω) such that the function

ξ → f(x, t, ξ)− γ3(x)

is linear for a.a.x ∈ Ω and for all t ∈ R. In addition

|f(x, t, ξ)− γ3(x)| ≤ (λ1,2)
1
2 c5 |ξ|

for some c5 > 0, for a.a.x ∈ Ω, for all t ∈ R and for all ξ ∈ RN .

Now, our first uniqueness result reads as follows.

Theorem 4.1. Let hypotheses (H1), (H2) and (H5) be satisfied and let p(x) = 2
for all x ∈ Ω. Also, we suppose that

c4 + c5 < 1 (4.2)

where c4, c5 > 0 are as given in hypothesis (H5). Then, problem (1.1) admits a
unique weak solution.

Proof. We recall that Theorem 3.1 guarantees the existence of at least one nontrivial

weak solution for problem (1.1). Thus, we suppose that u1, u2 ∈ W
1,Hlog

0 (Ω) are
two weak solutions for problem (1.1). According to (3.1), taking as test function
v = u1 − u2, we see that∫

Ω

∇u1 · ∇(u1 − u2) dx

+

∫
Ω

µ(x)

[
log(e+ |∇u1|) +

|∇u1|
q(x)(e+ |∇u1|)

]
|∇u1|q(x)−2∇u1 · ∇(u1 − u2) dx

=

∫
Ω

f(x, u1,∇u1)(u1 − u2) dx
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and analogously∫
Ω

∇u2 · ∇(u1 − u2) dx

+

∫
Ω

µ(x)

[
log(e+ |∇u2|) +

|∇u2|
q(x)(e+ |∇u2|)

]
|∇u2|q(x)−2∇u2 · ∇(u1 − u2) dx

=

∫
Ω

f(x, u2,∇u2)(u1 − u2) dx.

Then, subtracting these equations we get∫
Ω

|∇(u1 − u2)|2 dx

+

∫
Ω

µ(x)

([
log(e+ |∇u1|) +

|∇u1|
q(x)(e+ |∇u1|)

]
|∇u1|q(x)−2∇u1

−
[
log(e+ |∇u2|) +

|∇u2|
q(x)(e+ |∇u2|)

]
|∇u2|q(x)−2∇u2

)
· ∇(u1 − u2) dx

=

∫
Ω

(f(x, u1,∇u1)− f(x, u2,∇u1))(u1 − u2) dx

+

∫
Ω

(f(x, u2,∇u1)− f(x, u2,∇u2))(u1 − u2) dx. (4.3)

Now, using hypotheses (H5) along with (4.1) and Hölder’s inequality, according to
Proposition 2.3 (i), we derive the following estimate for the right-hand side of (4.3)∫

Ω

(f(x, u1,∇u1)− f(x, u2,∇u1))(u1 − u2) dx

+

∫
Ω

(f(x, u2,∇u1)− f(x, u2,∇u2))(u1 − u2) dx

≤ λ1,2 c4∥u1 − u2∥22 +
∫
Ω

(
f

(
x, u2,∇

(
1

2
(u1 − u2)

2

))
− γ3(x)

)
dx

≤ λ1,2 c4∥u1 − u2∥22 + (λ1,2)
1
2 c5

∫
Ω

|u1 − u2| |∇(u1 − u2)|dx

≤ λ1,2 c4∥u1 − u2∥22 + (λ1,2)
1
2 c5 ∥u1 − u2∥2 ∥∇(u1 − u2)∥2

≤ (c4 + c5) ∥∇(u1 − u2)∥22.

Consequently, taking into account that the second term on the left-hand side of (4.3)
is nonnegative (see Lemma 4.2 in Arora-Crespo-Blanco-Winkert [2]), we obtain

∥∇(u1 − u2)∥22 =

∫
Ω

|∇(u1 − u2)|2 dx ≤ (c4 + c5) ∥∇(u1 − u2)∥22

which implies

[1− (c4 + c5)] ∥∇(u1 − u2)∥22 ≤ 0.

As 1− (c4 + c5) > 0 due to (4.2), we conclude that u1 = u2.

We point out that with a proof completely analogous to the one of Theorem 4.1,
except that now we use Theorem 3.2 instead of Theorem 3.1, we get the following
additional uniqueness result.
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Theorem 4.2. Let hypotheses (H1), (H2)(i) and (H3)–(H5) be satisfied. Also, let
p(x) = 2 for all x ∈ Ω and suppose that (4.2) holds. Then, problem (1.1) admits a
unique weak solution.

5. Properties of the solution set. In this section, we focus on the set of the
solutions of problem (1.1) which we denote by S. With a view to Theorems 3.1 and
3.2 we know that such a solution set is nonempty whenever hypotheses (H1), (H2)
or hypotheses (H1), (H2)(i), (H3), (H4) are verified. We will therefore now examine
some of the properties of S.

We start with the following result.

Lemma 5.1. Let hypotheses (H1) and (H2) be satisfied. Then, S is a bounded

subset of W
1,Hlog

0 (Ω).

Proof. First, we point out that from Theorem 3.1 we know that the set S is
nonempty. Thus, in order to prove the claim we argue by contradiction. Therefore,
we suppose there exists a sequence {un}n∈N ⊂ S such that

∥un∥ → +∞ as n → +∞. (5.1)

As un ∈ S for all n ∈ N, from (3.1) taking as test function v = un, we see that∫
Ω

|∇un|p(x) dx+

∫
Ω

µ(x)

[
log(e+ |∇un|) +

|∇un|
q(x)(e+ |∇un|)

]
|∇un|q(x) dx

−
∫
Ω

f(x, un,∇un)un dx = 0.

This along with hypothesis (H2)(ii), Proposition 2.2 (ii), Proposition 2.1 (iii), (iv)
and Proposition 2.3 (ii) lead to

(1− c3)∥un∥p
−
− ∥γ2∥1 − C ∥un∥τ

+

≤ 0, (5.2)

where c3 and γ2 are as given in hypothesis (H2)(ii) and C is a positive constant (see
(3.5)). Taking into account that 0 < c3 < 1 and τ+ < p− (see hypothesis (H2)(ii)),
according to (5.1), we have

(1− c3)∥un∥p
−
− ∥γ2∥1 − C ∥un∥τ

+

→ +∞ as n → +∞

and this is clearly in contradiction with (5.2). Hence, the claim holds.

Next, we show that S is closed in W
1,Hlog

0 (Ω).

Lemma 5.2. Let hypotheses (H1) and (H2) be satisfied. Then, S is a closed subset

of W
1,Hlog

0 (Ω).

Proof. We consider a sequence {un}n∈N ⊂ S such that un → u in W
1,Hlog

0 (Ω). As
un ∈ S for all n ∈ N, we know that∫

Ω

|∇un|p(x)−2∇un · ∇v dx

+ µ(x)

[
log(e+ |∇un|) +

|∇un|
q(x)(e+ |∇un|)

]
|∇un|q(x)−2∇un · ∇v dx

=

∫
Ω

f(x, un,∇un) v dx (5.3)
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is satisfied for all v ∈ W
1,Hlog

0 (Ω). Then, taking into account that the operators A
and Nf are continuous (see Proposition 2.4 and proof of Theorem 3.1, respectively),
passing to limit as n → +∞ from (5.3) we get that∫

Ω

|∇u|p(x)−2∇u · ∇v dx

+ µ(x)

[
log(e+ |∇u|) + |∇u|

q(x)(e+ |∇u|)

]
|∇u|q(x)−2∇u · ∇v dx

=

∫
Ω

f(x, u,∇u) v dx

holds for all v ∈ W
1,Hlog

0 (Ω). This guarantees that u ∈ S and consequently we

conclude that S is closed in W
1,Hlog

0 (Ω).

Finally, we prove that S is also compact.

Proposition 5.3. Let hypotheses (H1) and (H2) be satisfied. Then, S is a compact

subset of W
1,Hlog

0 (Ω).

Proof. We need to show that any sequence {un}n∈N ⊂ S admits a subsequence
converging to some u ∈ S. According to Lemma 5.1, we know that S is a bounded

subset of W
1,Hlog

0 (Ω) and hence we have that any sequence {un}n∈N ⊂ S is bounded

in W
1,Hlog

0 (Ω). Therefore, there exists a subsequence of {un}n∈N (still denoted by
{un}n∈N) such that

un ⇀ u in W
1,Hlog

0 (Ω) for some u ∈ W
1,Hlog

0 (Ω).

Further, if ℓ ∈ C(Ω) is as given in hypothesis (H2)(i), according to Proposition 2.3
(ii), we know that

un → u in Lℓ(·)(Ω).

Using this fact along with Hölder’s inequality we derive that (3.4) holds.
Next, we remark that un ∈ S for all n ∈ N. Thus, choosing as test function

v = un − u in (5.3), we get∫
Ω

|∇un|p(x)−2∇un · ∇(un − u) dx

+ µ(x)

[
log(e+ |∇un|) +

|∇un|
q(x)(e+ |∇un|)

]
|∇un|q(x)−2∇un · ∇(un − u) dx

=

∫
Ω

f(x, un,∇un) (un − u) dx.

Now, passing to limit as n → +∞ in the previous equality, according to (3.4), we
infer that

lim sup
n→+∞

⟨A(un), (un − u)⟩ ≤ 0.

Then, the (S+)-property of the operator A (see Proposition 2.4) implies un → u in

W
1,Hlog

0 (Ω). As S is closed due to Lemma 5.2, we conclude that S is compact.

By similar arguments we can derive in addition the following result.

Lemma 5.4. Let hypotheses (H1), (H2)(i), (H3) and (H4) be satisfied. Then, S is

a bounded, closed and compact subset of W
1,Hlog

0 (Ω).
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Proof. In order to show that S is a bounded set, we can reason as in the proof
of Lemma 5.1 except that now we use Theorem 3.2 instead of Theorem 3.1 and
hypotheses (H3)-(H4) instead of hypothesis (H2)(ii), Propositions 2.2 (ii), 2.1 (iii),
(iv) and 2.3 (ii). In this way, we are able to get that

(1− c̄2 − c̄3) ϱHlog
(∇un)− ∥γ̄2(x)∥1 ≤ 0, (5.4)

where c̄2, c̄3 and γ̄2 are as given in hypothesis (H4) (see (3.7)). Now, as (1−c̄2−c̄3) >
0 due to hypothesis (H4), from (5.1) with view to Proposition 2.2 (v), we deduce
that

(1− c̄2 − c̄3) ϱHlog
(∇un)− ∥γ̄2(x)∥1 → +∞ as n → +∞.

This contradict (5.4) and hence we conclude that S is bounded.
Next, the closedness of S follows with a proof completely analogous to the one

of Lemma 5.2. Finally, as S is bounded and closed, proceeding in a similar way as
in the proof of Lemma 5.3, we can see that S is compact as well.
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