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Abstract: In this paper, we study coupled elliptic systems with gradient dependent right-hand sides and
nonlinear boundary conditions, where the left-hand sides are driven by so-called double phase operators.
By applying a surjectivity result for pseudomonotone operators along with an equivalent norm in the function
space, we prove that the system has at least one nontrivial solution under very general assumptions on the
data. Under slightly stronger conditions, we are also able to show that this solution is unique. As a result of
independent interest, we further prove the boundedness of solutions to such elliptic systems by employing
Moser’s iteration scheme.
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1 Introduction

Given a bounded domain Q C RN, N > 1, with Lipschitz boundary 09, in this paper, we consider coupled
elliptic systems of the form
=div(Dp, g0, (W) = (X, W, Uy, Yy, Vi) in Q,
—div(Dyp, g, 1, (U2)) = f,(X, Uy, Uy, Vi, Vi) In Q,
Dp, a8 = g(x, w, Up) on 0Q,
D, gpu,(U2) T = gy(X, Uy, Up) on 09,

1D

where1<p; <N, p, < q;<p* 0= u() € L*(Q) and Carathéodory functions f; : @ x R x R x R¥ x R¥ - R,
& :0Q xR xR — R fori = 1, 2 that satisfy appropriate growth and coercivity properties, see hypotheses (H1)
and (H2) in Sections 3 and 4, respectively. Moreover, we denote by & : dQ — R" the outer unit normal vector
field of @ and div(D, 4 ,.) stands for the double phase operator, whereby

D, g (W) = [VUlPVu; + 1,00 Va2 Vg
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for a suitable measurable function u; : @ = R, see Section 2 for details on the Musielak-Orlicz Sobolev
space WLH(Q).

The main goal of this paper is to establish sufficient conditions to prove the existence of at least one
nontrivial weak solution of problem (1.1). The assumptions on the data are very general and easy to verify for
concrete problems. The idea in the proof is the combination of a surjectivity result for pseudomonotone
operators along with an equivalent norm in W (Q) and the properties of appropriate eigenvalue problems
for the p,-Laplacian for i = 1, 2. More precisely, we use the first eigenvalues and corresponding estimates of the
Robin and Steklov eigenvalue problems for the p,-Laplacian fori = 1, 2. Under slightly stronger conditions, we
are also going to prove the uniqueness of the solution of system (1.1) by using again suitable eigenvalue
problems. As a result of independent interest, we further show the boundedness of any weak solution to
more general elliptic systems than in (1.1) by applying Moser’s iteration technique. The novelty in our work is
the fact that we combine a fully coupled gradient dependent double phase system with a coupled nonlinear
boundary condition. It should be noted that the operators in (1.1) reduce to the p-Laplacians if y; = 0 and to the
(g;, p;)-Laplacians if infy; > 0 for i = 1, 2, respectively.

Consider the double phase operator div(D,,q,) for1 < p < gand0 < u(-) € L*(Q), then the corresponding
energy functional is given by

L g + #9 jguplax. a2
14 q

]:uHI
Q

The functional J in (1.2) changes its ellipticity on the set {x € Q : u(x) = 0}, so the operator shifts between two
different phases. Thanks to this change of ellipticity, the double phase operator qualifies for modeling the
behavior of inhomogeneous materials. Indeed, suppose our domain Q consists of two different materials, then
we can choose u according to the geometry of the domain. Several mathematical applications can be found in
elasticity theory or in the study of duality theory as well as the Lavrentiev gap phenomenon, see, for example,
Zhikov [41,42]. Functionals of the form (1.2) have been considered for the first time in Zhikov [40]. Note that the
integrand R(x, &) = % &P + % |€] for all (x, &) € Q x RN of J has unbalanced growth, that is,

1
qlgP < ? 5P+ % 1617 < ollullo(L + %)

for a.a. x € Q and for all ¢ € RY with g, ¢ > 0. This new class of functionals can be used to provide models for
strongly anisotropic materials, so materials whose properties depend on the direction of the strain, like wood
for example.

Besides the double phase operator, problem (1.1) has nonlinear boundary conditions and nonlinear,
gradient dependent right-hand sides. Functions, which depend on the gradient of the solution, are also called
convection term. The difficulty in the study of such terms is their nonvariational character, that is, standard
variational tools cannot be applied, even in the scalar case. In the past years, several interesting works for
single equations with convection terms have been published, we refer to the papers of Ajagjal and Meskine [1],
de Araujo and Faria [10], El Manouni et al. [12], Faraci et al. [13], Faraci and Puglisi [14], Figueiredo and Madeira
[16], Gasinski and Papageorgiou [17], Gasinski and Winkert [18], Liu et al. [25], Marano and Winkert [27],
Papageorgiou et al. [35], and Pucci and Temperini [38].

For double phase systems, there are only the works of Guarnotta et al. [19], Liu et al. [26] and Marino and
Winkert [28]. The methods used in these papers are based on appropriate enclosure results in terms of
trapping regions formed by pairs of sup- and supersolutions and pseudomonotonicity arguments. But also
without double phase operator, there exists only few works for coupled elliptic systems with convection terms,
we refer to the papers of Faria et al. [15], Guarnotta and Marano [20,21], Guarnotta et al. [22], Motreanu et al.
[31,32], and Toscano et al. [39]. In the direction of coupled systems without gradient dependence, we mention
the works of Alves and Soares [2], Boccardo and de Figueiredo [3], Carl and Motreanu [4,5], Chabrowski [6], and
de Godoi et al. [11].

Our paper is motivated by the works of Marino and Winkert [28] and El Manouni et al. [12]. In [28],
existence and uniqueness results for coupled systems with homogeneous Dirichlet boundary condition have
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been proven for the first time. On the other hand, in [12], the authors prove existence results for single-valued
equations with nonlinear boundary condition via suitable eigenvalue problems. In our paper, we combine the
ideas from both papers to show existence and uniqueness results for the coupled system with nonlinear
boundary conditions given in (1.1).

The paper is organized as follows. In Section 2, we recall the properties of the Musielak-Orlicz Sobolev
space W (Q), introduce our function space for problem (1.1), and present an equivalent definition of
pseudomonotonicity for bounded operators (Proposition 2.3). In Section 3, we consider system (1.1) with a
certain growth and prove that any weak solution of this system is bounded by applying a suitable version of
Moser’s iteration method (Theorem 3.2). Finally, in Section 4, we state and prove our main existence result
(Theorem 4.2) using a surjectivity result for pseudomonotone operators and we give sufficient conditions for
the uniqueness of this solution (Theorem 4.3).

2 Preliminaries

Throughout this paper, we denote by | - | the Euclidean norm and by - the inner product in R¥. If X is a real
Banach space, then X* stands for its dual space and ( -, - )y for the dual pairing between X and X*.
Furthermore, we will use the notation s* = max{s, 0} and s~ = max{-s, 0} for s € R. Therefore, the positive
and the negative part of a functionu : Q —» R are described by u*(- ) = u(- )* and u™(- ) = u(- )7, respectively.

Let1 < r < o, Then, we denote by (I'(), || - |I-) and (I'(Q; RY), || - ||-) the Lebesgue spaces on  and by
(WA(Q), || - |lr) the corresponding Sobolev spaces, while the norms are given by

1

F

1
llull- = and Vil = (VI + [IVVIE)T

Jrurax
Q

for u € I'(Q) and v € W'(Q). In addition, we will consider the space L*(Q) with the norm

||u|l. = ess sup|u|
Q

for u € L*(Q).
Moreover, we will use the boundary Lebesgue spaces (L"(0R), || - ||r.a@) for 1 £ r < o, which are defined
by the (N - 1)-dimensional Hausdorff surface measure on the boundary 0Q of Q. We have

1

7

I|u|’do

oQ

llullr00 =

and  ||V||w,a0 = €SS sup|v|
0Q

foru € L'(0Q) with1 < r < « and v € L*(0Q). In the following, we write |0Q]| for the Hausdorff measure of 62,
whereas |Q| stands for the Lebesgue measure of Q. If we use Holder’s inequality throughout this paper, we will
write s = s—fl for the conjugated exponent of s € R with1 < s < o,

From now on, let i € {1, 2}. We choose 1 < p, < N and define

as the critical exponent of p;, i.e., the embedding
WhP(Q) = L'(Q)
is compact for 1 < r < p* and continuous for r = p*. Analogously, let

Ix N_pl
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be the critical exponent for the embedding into L7(0Q). This holds, since the linear trace operator
y: WHP(Q) - L'(9Q) is continuous for 1 <r < p;, and compact for 1 < r < p;,, see Necas [34, Section 2.4].
For simplicity of the notation, we will write u instead of y(u), if we consider u € WP(Q) on Q.

Now, we suppose the following hypotheses:
(HO) 1<p;<N,p,<q<p*and0 < y() € L*(Q) fori=1,2.
Under the conditions in (HO0), we introduce the mapping

Hi: Qx[0,0) > [0,0), (x,1)+~ P+ u,(x)th

and consider the modular function

Py () = [ 06, lu)dx = [ + pColult)dx
Q Q

for a function u € M(Q) with M(Q) being the set of all measurable functions on Q. The Musielak-Orlicz space
L*(Q) is defined by

LH(Q) = {u € M(Q) : pyy(u) < o},

u 51].

T

equipped with the Luxemburg norm

lully, = inf{r > 0 : pyy

Now, the corresponding Musielak-Orlicz Sobolev space is defined by
WIH(Q) = {u € LM(Q) : |Vu| € L*(Q)}
endowed with the norm
Nl = NIVUllge + [ullas

where ||Vu|ly, = || |Vu| |l From Colasuonno and Squassina [7, Proposition 2.14], we know that L*(Q) and
WLHi(Q) are reflexive Banach spaces, see also the monographs of Harjulehto and Hésto [23] and Musielak [33].
Furthermore, we have the following useful embeddings, which are proved in Crespo-Blanco et al. [8, Proposi-
tion 2.16].

Proposition 2.1. Let assumptions (HO) be satisfied. Then the following embeddings hold:
() L™(Q) = L'(Q) and WH(Q) = WLT(Q) are continuous for 1 < r < p;;
(i) WAH(Q) = L'(Q) is continuous for 1 < r < p* and compact for 1 < r < p’;

(ii) WIH(Q) = L'(09Q) is continuous for 1 < r < p;, and compact for1 <r < p,,.
We equip the space W*i(Q) with the norm defined by
|Vu| | |Vu| |%
T>03£[T] +lii(X)T +

for u € WYHi(Q), which is equivalent to the standard one defined above, see Crespo-Blanco et al. [9, Proposi-
tion 2.2]. The corresponding modular is given by

|ul |

[[Ullfge, = inf

dm]

Pl = [T+ pOOIvuft + ufp)dx.
Q

Taking Proposition 2.3 in Crespo-Blanco et al. [9] into account, we obtain the estimates

roind ([ ul [, )%, (Ul )% < 'y (W) < max{(ulff g, )%, (Ul )% QD
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for all u € WLH(Q)
Next, we recall some basis properties of the Robin and Steklov eigenvalue problems for the p-Laplacian for
p € (1, ). The Robin eigenvalue problem is given by

—div(|VulP2Vu) = A |ulP~u in Q,

(2.2)
|VulP~2Vu - v =-p |ulP>u on 92,

where § > 0 is a fixed number. Referring to Lé [24], the first (i.e., the smallest) eigenvalue Afp’ﬁ of (2.2) is
positive, isolated, simple and can be characterized by

Ay p = inf _[IVulde + B_[lu|l’da : I|u|pdx =1l
Q 2Q o)
This leads to
A pllully < 19wl + Bllulf oo,
which can be equivalently written as
Ul < AR, VUl + Bllullh 0), 23

for u € WiP(Q).
Furthermore, we consider the Steklov eigenvalue problem for the p-Laplacian, which is defined by

—div(|VulP2Vu) = - |[uf*u in Q, 2.4)
[VulP=2vu-v=2A|uP?u on 0. )
Again, the first eigenvalue )tfp of (2.4) is positive, isolated, simple and can be represented by
25, = inf{[|vupdx + [jupdx: [lupdo =1},
Q Q o0Q
see Chapter 5 in L& [24]. From that we obtain the inequality
oo < Qi) IVl + lulf) (2.5)

for u € WP(Q).
Let us now recall the definition of pseudomonotonicity and the surjectivity result for pseudomonotone
operators.

Definition 2.2. Let X be a reflexive Banach space and A : X — X*. Then A is called
() bounded if A maps bounded sets to bounded sets;
(i) pseudomonotone if u, = u in X and limsup,_, (Aup, U, — u) < 0 imply liminf, .. (Aun, up — w) 2
(Au,u — w) for all w € X,
(iii) to satisfy the (S+)-property if u, — u in X and limsup,,_,,, (Auy, Uy — u) < 0 imply u, — u in X;
(iv) coercive if
. {(Au, u) -

m
llull—e |ul]

holds.

Since we consider bounded operators, we can use the following equivalent definition of pseudomonoto-
nicity. As we did not find any reference for this known result, we present the proof here.
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Proposition 2.3. Let A : X - X* be bounded. Then the following two conditions are equivalent:
(1) A is pseudomonotone.
(i) From u, — u in X and limsup, _,, (Auy, U, — u) < 0, we have Au, —~ Au in X* and (Auy, u,) — (Au, u).

Proof. Let A be pseudomonotone and {u;},eny C X withu, — u € X and limsup,_, ,(Aup, up — u) < 0. Due to the
pseudomonotonicity of A, we have

lim (Aup, u, — u) = 0. (2.6)

n—o

By the boundedness of A, we obtain the boundedness of {Au,},en. Hence, there exists a subsequence {Auy, }yen
of {Au,}neny and b € X* with

Au, — b in X*.
By the definition of pseudomonotonicity and (2.6), it follows that

0 < liminf,,- o (Aly, Uy — w) — (Au, u — w)
= liminf,, - e ((Ally, Uy — W) + (AU, u — W) — (AU, U — W))
= liminfy,- o (AU, — Au, u - w)
=(b-Au,u-w) forall weX.

Therefore, we have Au = b and Au, — Au for the original sequence. Furthermore, this implies
(Aup, Un) = (Aup, Up — u) + (Aup, u) » (Au,u) as n— o,

where we have used (2.6) again.
Now, let A satisfy the condition (ii). We consider {up},ey CX with u, ~ u € X and limsup,_.,
(Auy, u, — uy < 0. Then we have Au, - Au and (Aup, u,) — (Au, u), which yields

liminf,, - (Auy, u, = w) = liminf,,. (Aup, uy) — liminf, ... (Au,, w) = (Au, u — w),
for all w € X. Hence, A is pseudomonotone. O

The following surjectivity result for pseudomonotone operators will be useful for our existence result in
Section 4. The proof can be found, for example, in Papageorgiou and Winkert [36, Theorem 6.1.57].

Theorem 2.4. Let X be a real, reflexive Banach space, let A : X — X* be a pseudomonotone, bounded, and
coercive operator, and let b € X*. Then, a solution of the equation Au = b exists.
Finally, let V = W1%1(Q) x WlH2(Q) be equipped with the norm
(s, wlly = llwllig + s,

for (w3, up) € V. Obviously, V is a reflexive Banach space. Moreover, let A : V - V* be the operator given by

(A, ), (93, 0y = [(VulPr-29u + 1,00V 92V, Voo, dx
Q

+ [P 2V, + 41,001V 21) Vp @7)
Q
+ 2w dx + lug-2up,dx
Q Q
for (ulx uZ)J ((pp ¢2) ev.
Then, A fulfills the following useful properties.

Lemma 2.5. Let (HO) be satisfied and let A : V — V* be the operator defined by (2.7). Then, A is well-defined,
bounded, continuous, monotone, and of type (S+).
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This can be proved analogously to the proof of Proposition 3.4 in Crespo-Blanco et al. [8] with slight
modifications.

3 Boundedness results

In this section, we show that weak solutions of systems like (1.1) are bounded, i.e., for any weak solution
(ug, u) € V of (1.1), we already have y; € L*(Q) N L=(9RQ) for i € {1, 2}. First, we state the following assump-
tions on the data of (1.1):
(H1) The functions f, : Q x R xR xR¥ xR¥ - R and g;: 02 xR xR > R (i € {1,2}) are Carathéodory
functions such that the following hold:
() there exist constants 4;, B; > 0 for j € {1, ..., 7} and exponents &, b; > 0 for [ € {1, ...,8} with

06 s, 6 & mI< Ay [sl + Ay t1% + Az [s|®|tls + Ay |§]% + As |nife + Ag 1§70\ + 47,
065, 6, & mI< By [sPr + By [tf> + By [sPPs|ef™ + By |€1% + Bs InlPs + B €7 PPs + B,
for a.a. x € Q, for all s,t € R and for all £, € RY such that the conditions below are satisfied:

* -_—
Py — P,
* U2

(E) @&s<p’-1, (E2) a,<

(E3) . (F4) ds<p, -1,

pf  p; Py Eh

5 Pl* - D a; dg Pf DN
(E5) dg < , (E6) — + ,

6 pl* pZ pl pZ pl*
(E7) by < %pf, (E8) by<p)-1,

2

g BB PR g PR

pf by by ’ Py }

- 57 58 pz* )
(E11) bg<p, -1, (E12) —+ —<—7—

6= P o op, b

(ii) there exist constants C}-, ﬁj > 0 for j € {1, ...,4} and exponents &, d; > 0 for [ € {1, ...,4} with
lgi(x, s, O < CiIsl® + G [t + G |s[%[e[ + Gy
18,0, 5, O < Dy Is| + Dy |t} + Dy |s|5|cl® + D,
for a.a. x € 9Q and for all s, t € R such that the conditions below are satisfied:

Py — D1

(FI) <py, -1, (F2) §<2Flp
pl*
() B8 PeTPogpyy g PPy
P Doy D1« D
; P -
(F5) dy<py, -1, Fe) B Y PuP

pl* pZ* pZ*

A solution of (1.1) is understood in the weak sense in the following way.
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Definition 3.1. A function (u, u;) € V is called a weak solution of problem (1.1) if

I(quﬂPl‘ZVul + 1,00|Vi4"2Vu)- Vo, dx
Q

@D
= If;(x, Uy, Up, Vitg, Vilp)@ydx + Igl(x, W, U)p,do
Q oQ

and

Jvaler 29w, + 1,00l Vo,
Q

(3.2)
= Ifé (X: U, Uy, vul) Vu2)¢zdx + Igz(xy U, uZ)q)ZdG
Q 0Q

are satisfied for all (¢, ,) € V.

Based on the assumptions in (H1), it is clear that the definition of a weak solution is well defined since all
integrals in (3.1) and (3.2) are finite.

The following result, which gives us the boundedness of weak solutions, is mainly based on ideas in
Theorems 3.1 and 3.2 of Marino and Winkert [29], where Moser’s iteration scheme is used for the proof.

Theorem 3.2. Let hypotheses (H0) and (H1) be satisfied. Then, we have the following assertions:
) (w, wp) € (L'(Q) N L'(0Q)) x (L'(Q) N L'(0RQ)) for allr € (1, );
(@) (w, up) € (L7(Q) N L7(0Q)) x (L™(Q) N L*(0Q))

for every weak solution (wy, u;) € V of problem (1.1).

Proof. (i) Let (u;, u;) € V be a weak solution of (1.1) and r € (1, «). We will prove only u; € L'(Q) N L"(dRQ),
since the claim for u, follows analogously. Without loss of generality, we assume uy, u; > 0, because otherwise
we would consider ', u; for i € {1, 2}. Furthermore, we will denote by M;, i € N, constants, which will be
used throughout the proof and may depend on the Lebesgue norms of w, uy, Vuy, Vi,

Leth 2 0 and k > 0. We define uy , = min{wy, h} and fix ¢, = uluf fﬁ. First, we compute

-1
Vo, = whVuy + kpugul Vi .

Since ¢, € W'*(Q), we can choose ¢, as test function in (3.1) and obtain

I(|Vul|P1‘2Vul + yl(x)|Vu1|q1‘2Vu1)-(uf f,’Vul + Kpluluf ;,p l_1)Vu1,h)dx
Q

_ Kp Kp
= _[fl(X, U, Uy, Vg, Vi )ugtyy 'dx + _[gl(x, Uy, Up)Uylly 1y'da.
) 20

_ -1 .
As 1, 00)|Viy|h 2V -(uf %Vul + Kpluluf ;lp 1 )Vul,h) > 0 for a.a. X € Q, we can estimate

Iqu1|P1 Wdx + Kp, I(|vu1|p1—2vu1 ~Vu1,h)u1uf§f’1‘1)dx
Q Q

Kp KD
< Ifl(X, U, Uy, Vg, Vg )ully y'dx + Igl(x, Uy, Up)glly 1'do.
Q a9

Next, since uy, = Wy and Vi, = Vig on {x € Q : u(x) < hj}, this leads to
Iqullpluf Wdx + Kkp, I Vi |Prug pidx
Q {x€Q:u(x)<h}

Kp KP.
< J’ji(x, Uy, Uy, Vi, Vi )uyuy j'dx + _[gl(x, Uy, Up)lhly 'do.
Q 0
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According to (H1)(i), we can estimate the right-hand side and achieve

K]
_[fl (X, w, Uy, Vg, Vi) ugliy pidx

3.3)
< I(Al |U1|d1 + Az quldz + Ag |u1|‘73|u2|‘74 + A4 |Vu1|‘i5 + AS |Vu2|‘76 + Ae |Vu1|‘77|Vu2|‘78 + A7)u1uf§’,1dx.
Q
Analogously, we have
[ 206w, wyfido < (@l + G ol + G wfwfs + Couhdo (34)

oQ
for the second term by using hypothesis (H1)(ii).
Now, we examine (3.3) more precisely. By (E1), the exponent d; satisfies d; < pl* -1, and therefore, we

1+1 Kpy

know that Zl <1+ u1 u1 » a.e.in Q, and finally,

AlJ— a1+1u1K fidx < Alj(l +uf ufﬁl)dx AlIul uypdx + AQ.
Q Q
Moreover, Holder’s inequality yields
1 1
51 1
A qu wty pidx < Ay I 1y J(ululkzl)sldx
Q Q

= &l lwate s

< Ml(l + ”ulul,fhnpisl’):

where we choose s; = = and $1 > 1 holds due to (E2). Note, that we have ululh (wufpPr +1 ae. in Q.
Similarly, Holder’s mequahty with three components leads to
As J'ul‘kuz‘i“ulufﬁldx
Q

L 1 1
X1 Y1 z

< Ay _[ufy‘ldx juf”ldx j(ulule)zldx
Q Q Q
= g+ |qu||p“llu1u1 Iz
< Mp(1+ [Juatefyllpia),
where x = %13, Y = Z—i and le =1- Xll - )%1 Thanks to (E3), this choice is admissible. By applying Young’s

inequality with 2—; > 1, we obtain
ds

~ 5 Kp ~ 1 ;1 Kd 1™ Kk(py~-ds)
Ay IlVU1|“5u1U1,hldX = A4I . Vi | gy’ A W P ldx
o o\ 244 4

as

1|me ppas Kp
U g pdx
4

~ 1
< A4_[ Vet Praggdx + Ay I[
o 244 o

1
EIVU1|p1u1th + A4[

171 ‘15
] |sz|+ u1 i
Q

4

1
EI|VU1|p1U1h dx + Ms|1 + Iu ufﬁl
Q Q
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Next, Hélder’s inequality gives us
1 1
52 53
& [1vufuBrax < Al [1vwfidx | | [auufidx
Q Q Q

g ig ({11 P
= As||Vua|IpS || uatay 1155

p
< My(1 + [ty lpisy)s

b 1_4,_1_21
—asandzz—l , SO

where s; = 2—2 > 1 by (E5). Again, we use Holder’s inequality such that x, = Z—;, Y, %Y,

we obtain

A~5 I|Vu1|d7 |Vu2|‘78 ulufflldx

Q

€1 1 1
X2 y2 z

Al [lvwpeax | ([ | |[auubzdx
Q Q Q

e e
A1Vt Vet g,

IA

p
Ms(1 + [[tattfp|lpiz.)-

IA

Note that z, > 0 by (E6). Finally, estimating the constant term yields

.
A7Iu1ufﬁ1dx < A7‘[ulp1 udx + A7|Q).
Q Q

Now, we can turn to (3.4). By (F1), we have for the first term

C‘Juf“hf Mdo < E‘J(ulp it + 1)do = Cljuf “upido + G|0Q)
oQ oQ oQ
Applying Hélder’s inequality with ¢ = L] according to (F2) leads to

C2
1 1
t 4
6. [ufuuffao | [ufdo | | [ udfyiao
0Q 0Q oQ
A 1 Kp
= Col|wallp,, o0 llustty 1'lle; 00

p
< Mg(1 + |Justigplpie; 00)-

To deal with the next term, we need Holder’s inequality with three components again to obtain
1 1 1
X3 3 z3
Gy Juﬁu{“uﬂf Mido < G J’ufy@da J’uzc‘%do I(uluf Iyzsdg
oQ oQ oQ oQ

A 3 xp
= G|l o0lUallpy, o0 [ttt 1 l|z, 00

P
< My(1 + [Jwstigpllpiz,.00),

where the choice x3 = p5—13*, Y3 =% amdzl3 =1- X% - %3, is permitted in (F3). Finally, we get

C;Iumf Mdo < @qu My do + G409
0 aQ
According to (E2), (ES), and (F2), we know that
p1* pl*

${,8g<— and t{<—
b py
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and by (E3), (E6), and (F3) also

p D1
), 7y < -1 and 2z < —=,

2] Dy

Therefore, we can set

*

’ 4 pl
S = max{sy, S5, 21, %} € |1, p_

1

t =max{t], z3} €

2
p,

Summarizing, these estimates result in

1
EﬁVuﬂPlu{fﬁldxwm [ 1vwpafax

{x€Q:uy(x)<h}

<A+ Mg+ A7)Iu1 uppdx + (G + C4)I uyhdo 35)

+ Mgl [usafSyllpts + Mol[ustfSyllp' o0 + Mio(k + 1).

The left-hand side of (3.5) can be simplified to

1
Svwepdbiax e [ vwpagfiaxc: I|V(u1u1 WiPdx
Q

Z(K + 1)P
{x€Q:uy(x)<h}

This can be found in Marino and Winkert [30], see the inequality after (3.7). Now, using this in (3.5) yields

kp, +

m”V(ulu1 Wb < May(kp, + 1)Iu1 w ndx + My _[ “u o

) ae
P P
+ Ms||wtgpllpss + Mol|ttgpllpye,o0 + Mio(k + 1).

From now on, we can argue analogously to Marino and Winkert [29, Theorem 3.1] starting with (3.12). Note the

slightly different notation. Here, the exponents are denoted by p, q instead of p,, p, and the variables by (u, v)
in place of (uy, up).

(ii) The statement can be proved analogous to Marino and Winkert [29, Theorem 3.2]. O

4 Existence and uniqueness results

In this section, we are going to prove that problem (1.1) has at least one nontrivial weak solution under certain
conditions for the right-hand sides of (1.1).

To this end, let h; : Q x R x R x R¥ x R¥ = R and k; : 9Q x R x R = R be Carathéodory functions for
i € {1, 2} such that
fi0Gs, L€ =h(x, s, t,&n) ~ |sli%s foraa. X €Q,
LGS, E ) =hy(x, s, t, &, n) - |t|2"2t foraa. x€Q,
&(x, s, ) =k(x,s, t) - B, |s|i"2s foraa. x € 0Q,
&(X, 8, t)=ky(x,s,t) = B, [t|>"2t foraa. x € oQ,

for all s, t € R, for all ¢, € RN and for By B, > 0. Then, problem (1.1) becomes
=div(Dp, g, (W) = a(X, W, Uy, Vug, Vi) = g~y in Q,
=div(Dp, g, (U2)) = ha(X, Wy, Uy, VU, V) = |UgfP2"%uy in Q,
Dy (t) O = Fka(x, wy, up) = By [ugr 21y on 0Q,

D, i (U2) O = Ko(X, Uy, Up) = B, [Us|P2 Uy on 9Q.

4.1
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We assume the following assumptions on the functions hy, hy, ki, k;.
(H2) hi: QxR xR xR¥xR¥ =R and k;: 02 xR xR - R are Carathéodory functions with
hi(x,0,0,0,0) # 0 for a.a. x € Q and i € {1, 2} such that the following hold:
(i) There exists @; € L (Q), a; = 0, i € {1, 2} with

Ihi(x, s, t, & I < Ay |l + Ay |tlfe + Ag |ss|tls + Ay (€13 + As |l + Ag [E1%|n]% + ay(x),
lha(x, s, t, & )| < By IsIPr + By |t]P2 + By |sfPs|t]Ps + By |E[bs + Bs |nlPs + Bg |E[07|nlPs + ax(x)

for a.a. x € Q, for all s,t €R, for all £, n € RN with constants A]-,ﬁj >0 for j€{1,..,6} and
1< 1 <p*fori€ {1, 2}. The exponents d;, by = 0 for [ € {1, ... 8} fulfill the conditions listed below:

n-1
(El) d<n-1, (E2) @< 1r m,
1
a a n-1 rn-1
(E3) =+ —L<——, (E4) ds<—p,
n n n n
n-1 a a n-1
(E5) @< —p,, (E6) —+—<—+—,
n P1 D n
N -1 ~
(E7) bi<=—n, (E8) by<r-1,
2
53 54 n - 1 ~ - 1
E9) — +—<-2—= (F10) bs< )
( ) n r r ( ) 5 r P1
. -1 b, by n-1
(E1Y) bg< 2—p,  (F12) —+—2<t -,
iy 1 D2 p)

(i) There exists @; € L (8Q), @ = 0, i € {1, 2} with
lki(x, s, O] < Cy s + G [¢f2 + G5 [s|%]tl + @ (x)
lko(x, s, O < Dy [sld + Dy [t1% + Dy |s||t[ds + Gy(x)

fora.a. x € 0Q, for all s, t € R with constants C} Dj 20,j€{1,2,3}and1 <} < p;, fori € {1, 2}. The
exponents ¢j, &j > 0 for j € {1, 2, 3} satisfy the following conditions:

s . -1,

(FI) &<F -1, (F2) &< ==,
1

& & B-1 -
(F3) =+2<2 = () d<*—F

1 r n 2

. d dy, ©H-1
(F5) dy<h-1, (F6) =+ <=

n n r

(iii) There exists w; € LY(Q) and w; € LY(9Q), such that
h(x,s,t, &, m)s + ha(x, s, 8, &, Mt < A(IEPr + [nIP2) + T([s]Pr + [t]P2) + wi(X)
foraa. x € Q, for all s, t €R, for all &, 7 € RY and
ka(x, s, t)s + k(x, s, t)t < O(|s|Pr + [t]P2) + wa(X)

for a.a. x € 9Q and for all s, t € R, whereby A, T, ® > 0 are constants that satisfy one of the two
conditions (A) or (B):
(A) There holds
@ A+ Tmax{(Af, )7 A, ) <1,
(i) TS, )G+ @< B,
(iii) T(ﬂfpz,(z)'lfz +®< B
(B) There holds

maxiA, I} + CDmaX{(Afpl)‘l, (Afpz)‘l} <1
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Here, Afpl,(l, Allfpp{z denote the first eigenvalue of the p,-Laplacian with Robin boundary condition given in (2.2)

and constants {3, (; > 0, while )tfpl,/lfpz stand for the first eigenvalues of the p-Laplacian with Steklov
boundary condition given in (2.4).

Next, we state the definition of weak solutions of the system (4.1).

Definition 4.1. A function (uy, uy) € V is called a weak solution of (4.1) if

I(lvullpl_zvul + 1, (0| Vi |12V )- Vo, dx + I|u1|P1‘2u1goldx
2 2

4.2)
= _[hl(X, Uy, Uy, Vg, Vi) dx + Jkl(X, W, Up)p,do - B; _[|u1|p “2uy0,do
2 Pt a0
and
J(9l29uy + (0Tl Vpyclx + [P,
¢ ¢ 4.3)
= Ihz(X, Uy, Uy, Vg, Vip)@,dx + Ikz(X, w, )@,do - B, I|u2|P2‘2u2¢2d0
) 0 0

are satisfied for all (¢, ,) € V.

Obviously, the terms in (4.2) and (4.3) are well-defined under hypotheses (H0) and (H2). Our main existence
result reads as follows.

Theorem 4.2. Let hypotheses (H0) and (H2) be satisfied. Then, there exists a nontrivial weak solution (uy, u;) € V
of problem (4.1).

Proof. We first consider the Nemytskij operators associated to h = (hy, hy) and to k = (k, k;). They are defined
by

Ny 0 WEH(Q) x WEH2(Q) C LA(Q) x L(Q) — L(Q) x L%(Q),
Ny : Li(0Q) x L2(aQ) — L1(9Q) x L#(9Q)
with
Na(wr, tp) = ((- g, Uy, Vi, Vi), By(c Uy, Up, Vg, Vitp)),
Ny, ) = (K- g, Up), ko 1y, Up)).
Due to the fact that1 < r; < p* and 1 < 7; < p;, hold for i € {1, 2}, we have the compact embeddings
J: WEH(Q) x WAT(Q) — L(Q) x L%(Q),
J o WhH(Q) x WEHA(Q) — LA(8Q) x L%:(8Q).
Furthermore, the adjoint operators are given by
J* L@ x LHQ) » (WHH(Q)* x (WH(Q)),
J*L(99Q) x LE©@Q) — (WHh(Q))* x (W4(Q)*.
Now, we define N, = j* o N and Ny ="  Ni © j. Taking the isomorphism
VE = (WHH(Q) x WHHE(Q))* = (WHH(Q))* x (WHH(Q))*

into account, we get

(Nn(uy, W), (@, @)y = Jhl(X: Uy, Uy, Vi, Vi) dx + _[hz(X> Uy, Uy, Vi, Vug)@,dx
Q Q
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and

(Ni(ta, uz), (@1, @))v = Jk1(X, Uy, Up)p,do + Ikz(X, W, Up)@,do
a9 a9

for Np, Ny : V - V* Moreover, we define the operator

Np : LP(9Q) x LP(9Q) — LPi(9Q) x LP:(9Q)
by

Ny(u, w) = (B [P 2w, By [up]P2~2up).

In the same way as above, we define Ng = I* B = [, where

[ WAH(Q) x WIHA(Q) — LPi(8Q) x LP(0Q)
is the compact embedding and

* : LP(0Q) x LPi(0Q) — (WMHi(Q))* x (WHx(Q))*
its adjoint map. Then, N3 : V — V* is given by
(Np(ut, 1), (@1, 0y = [ By Il 2w,do + [ B, w2, do.
oQ 0Q
Now, we consider the operator A : V - V* given by
A=A-Ny- N+ N,
where A was defined in (2.7). By construction, a function (u, ;) € V is a weak solution of (4.1) if and only if
A(uy, uy) = 0 holds.
In the following, we will apply Theorem 2.4 and show that A satisfies the assumptions given in the

theorem.

First, the operator A is bounded. This follows directly from Lemma 2.5 and hypotheses (H2)(i) and (ii).

Next, we are going to show that A is pseudomonotone. For this purpose, let {(ul("), uz(”))}nEN be an arbitrary

sequence in V such that
", w") ~ (u, w) in V
and

limsup (AW™, ™), @™ - w, ™ - w))y < 0.

oo
In particular, we obtain u{"” — w in W*(Q) and u{"” — u, in W*2(Q). As1; < p* and i} < p;, holds, we know
that
WLIH(Q) - L(Q) and WIH(Q) -~ Li(8Q)
compactly fori € {1, 2} due to Proposition 2.1(ii), (iii). Hence, there are subsequences, not relabeled, such that
V> w in Q) and w - w, in L(Q), (4.4)

u™

- inLi(0Q) and w® - u, in L%(9Q). (4.5)
By a similar argument, we have
"V > in IP(0Q) and wV - u, in LP(0Q),

since p; < p;, holds for i € {1, 2}.
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We now prove that

limsup (A", "), (" - w, w” - w))y = limsup (A", w"), W - w, w” - W)y <0, (46

n—oo n—o

to use the (S+)-property of A, see Lemma 2.5. Taking the growth condition in (H2)(i) into account yields the
estimate

[t ™, uf®, v, vu)™ - w)dx
Q
< [y 10 + Ay 1P + Ay PP+ Ay (v
Q
+ As V) + Ag Vi1 ) + aa(x))™ - wdx,

where we are going to show that the right-hand side converges to zero by (4.4). We consider every term
separately. Applying Hélder’s inequality gives
1 1
r{ T
A [lup® - wiax < A [l a| | [lu® - wp
Q Q Q
= A1l @ (m
= Arllu™layy ™ = ]l

for the first term. By (E1’), we have d;r{ < 13, so

i

el < @+ mPmax| < ca+ i

d]f‘f -
Q

with C > 0 is bounded for n € N, and finally,
A [ ™™ - wldx < Al 1™ - wl, ~ 0
Q

asn — o due to (4.4). Analogously, the condition (E2’) and (4.4) yield

iy [l lu™ = wldx < Ao ™ = i}y, ~ 0
Q

as n — o, Furthermore, Holder’s inequality with three components and (E3’) gives us

g [ ™ s ™ = e < Al [P, [ = wll, 0 as n - o,
Q

where we choose X, y;, z > 1 with

l+l+l—1 zn=n, ax<n, G, <n

Xy oa , 1= N, 3% = 1, 4 =N
To estimate the next term, we note that W%(Q) = WP(Q) holds fori € {1, 2}. Consequently, (E4’) and (E5’) as
well as Holder’s inequality and (4.4) imply

Ay [ pistu™ - wldx < Ay [VaP)E, ™ - wll, - 0,
Q

i 190 e ™ = wylax < As [V 0™ =l ~ 0
Q

égrl/
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as n — o, In addition, we obtain
Ag [1uf™ i |vuf" ™ - wyldx
Q

< Agl V|3 Va6, ™ = wlly, 0 as n - oo,

where we choose x, y,, z, > 1 with (E6’) such that
1+1+llzr an, < p,, dgy, <Pp
— T T — =1 2 = 1, 7X2 = Pqs =
X Yy, 1 2 2
is satisfied. Finally, we obtain
JlenCotu®™ = widx < Jlafh ™ = iy, = 0 as n - oo,
Q
since a; € L{(Q). All in all, it follows that

n—o

lim Ihl(x, ™, ™, vu™, vui™y ™ - w)dx = 0.
Q

The same conclusion can be done for h; by the help of (E7) to (E12’) and (4.4), so that we know

lim Ihz(x, w™, wP, vu™, vis) (P - up)dx = 0.
Q

n—o

We conclude that

lim (N (™, ™), @™ - w, w® - wy))y = 0.
n—oo

The boundary term can be handled in the same way, the only difference being in the application of (H3)(ii) and
(4.5). This leads to

(N, ™), @™ - w, w® - w)hy

= Ik1(X, ™, (™ - u)do + IkZ(X’ ™, MW - u)do - 0 as n - .
oQ 0Q

Furthermore, we have

(NpCug™, ™), g™ = 1, 5™ = )y
= [ B, PPt @® - wydo + [ B, PPt - w)do
0Q oQ

1
D

P11 P21
P b2
Bl [luPpdo| |[1u® - wpds| + ) [l"pda| | [1us" - wpedo
oQ oQ oQ oQ

1

b2

IN

pi-1 py~1
Billu™Ib o0 1™ = willp 00 + Bollts ™I s0 15" = Usllp,00 = 0 as n - .

Hence, (4.6) holds. Since A fulfills the (S+)-property, we conclude (u("), uz(")) = (ug, up) in V. Thus, the original
sequence converges as well. By the continuity of A, we have ﬂ(ul("), uz(")) - A(uy, Up) in V*. In particular, this
implies

A, w) = Aw, uy)
and
(A", w"), @™, w5y - (A, w), (W, w))y.

So A is pseudomonotone.
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It remains to show that A : V — V* is coercive. For (i, u;) € V, we use (H2)(iii) to estimate

(AW, W), (W, U))y
= [(vup29; + Oty Vudx + [l

+ [P0, + 1,00Vl 2V) Vil + [Jufeedx

Q Q
- Ihl(X: W, Uy, Vi, Vip)uydx = Ihz(x, Uy, Uy, Vi, Vitg)updx
Q Q

- [k w, wwdo - [kx, w, wyedo + B, [ lwlrdo + g, I|uz|Pzda
oQ oQ 0Q

4.7

\%

[ + gy CoTmindx + [Vl + Ol + [l + [l
Q Q

- J’(/\(IVMI”1 + |VigfP2) + T(JwfPr + JuglP2) + wi(x))dx
Q

- [@up + ) + w0000 + Byl o0 + Byl oo
0Q

IVallp! + (1Vullg i, + (IVellp? + IVUallge s, + [fwallp + [[ueol]p?
- AllVa|lp! = Al[Viallp? = Tlfwallp! = Tlfuallp? = llewall

P,
— |y} o0 — Plluzlly o0 ~ llwalloe + Billtlly a0 + Blltally s

The following observation is divided into two different cases.
Case 1: Condition (A) of (H2)(iii) is satisfied. In this case, we use the Robin eigenvalue problem for the p,-
and p,-Laplacian given in (2.2), that is, inequality (2.3) for p, and p, reads as follows:

luallp! < AR, 2 (Vallpt + Gllwlly o0),  w € WHH(Q), (4.8)
lluallp? < (/11p2 o) 1(|Vug) 2 + (2||uz||§§,a§z), U, € Whpy(Q). 4.9)

Combining (4.7) with (4.8) and (4.9), we obtain

(AW, wp), (w, U))v

> |Vuallp! + 1Veallg, + 19ll5; + VUG, + lhalls} + [luzle;

= Al[Vullp! = AlVigllp? = TAS, ) (IVwllp! + Gl o0)

- T, ) 1(|| Va2 + (2||U2||p2,ag) — flwll - ‘D||u1||p1,aga

= D[t 00 = llwalhae + Billllpioe + Bollttlly o0

(Vullp; + [IVenliga, + Ilallp})(A = A = TS, )

+ (IVuallp? + Ve, + walls)A = A = TGE, )

+ (B, ~ TOL, )"0~ ®)l[ulylon

+ (B, = T, )G = Dwallyion = llwilh = llwalhee

Py U@ = A - T 0™ + oy rr(U2)( = A = TS, )™ = llwilh = [lwalhee,

v

v

since B; = T(Afy, ()¢ — @ > 0 for i € {1, 2}. We fix
C=1-A- FmaX{(/lpr(l)"l, ()lfpp(z)"l}.
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Then, we know from (H2)(iii)(A) that C > 0, and hence (2.1) yields

(A, w), (, w)yy  CPip M) * Pig, () Jwilh + [lwallon
(| (a, t)|lv - [t u)|lv [|(ua, up)|ly
. COmin{(J[u] £, )P, (llwallfge )3 + mind(f|uzlff g, )P, (U2l 40,)%3)

lwalli 7, + Nellig

o * Joalhoe o for iy, )y — oo
- 1, W2)[[v
1, Wy ’ !

because
Nl + llwalho0
(|, W)l
and p, q; > 1fori € {1, 2}.

Case 2: Condition (B) of (H2)(iii) is satisfied. Now we consider the Steklov eigenvalue problem (2.4) and use
inequality (2.5) for p;, p, which gives

P y p p
[wllphee < (i) (Vullp; + llwillp), € WHH(Q),

iy oe < Q) (IVillp? + [lwllp?), 1y € WHP(Q).
As in the proof of Case 1, equation (4.7) gives
(A, Uy), (W, Uy))y
> |V p1+v qq + IV Pz+v q2+ p1+ P,
2 ||[Vullp; + [[Viullge, + [Vl + (IViellg.e, + [l + [y
p p p p
= A|Vu|lp, = AlVielp; = Tlfullp; = Tllwalp,
_ p p _ p p
= DAL ) IVullp! + llwallp) = P, ) (VUallp? + Nallp?) = llenlh = l|walhoe
2 (|Vlp! + [IValld, + lluallp(d =~ max{A, T} - (2, )™)
+ (IVugllp? + |V, + 1wallp?)(A ~ max{A, T} = @5, ™) = [lwll = [lwslh.o0
2 (1 - max{A, T} - ®max{(A}, )™, (ﬂfpz)'l})(Pl’fwl(ul) + 01, (W)) = llnlh = [lw2llee,
where
1 - max{A, T} - @max{(A}, )™, (A,)"} > 0
holds by assumption. Again, the result is

(A(uy, ), (U, Up))y
[1(u, up)|lv

- as ||(w, w)lly — .

Hence, the operator A is coercive. By Theorem 2.4, there exists (i, Up) € V with A(w, u;) = 0. Moreover,
hi(x,0,0,0,0) # 0 for a.a. x € Q,i € {1, 2} implies (wy, uy) # 0. This finishes the proof of the theorem. O

Next, we prove a uniqueness result for problem (4.1) under some stronger assumptions. To this end, we
define

h:Q xR2x (RM?2 - RZ% h(x,s, &) = (h(x, s, £), hy(x, s, &)
and
k: Q xR2- R? K(x,s) = (k(x, 8), k(x, s))

for a.a. x € Q, for all s € R? and for all £ € (RV)% From now on, we make the following assumptions in
addition to (H2):



DE GRUYTER Coupled gradient dependent elliptic systems == 19

(U1) There exists G; = 0 such that
(h(x,s,&) —h(x, t,))(s - t) < Gy |s — t

for a.a. x € @, for all s, t € R? and for all £ € (RV)2.
(U2) There exists G, = 0 such that

(k(x, s) — k(x, t))(s - t) < Gy |s — t]?

for a.a. x € 0Q and all s, t € R2,
(U3) There exists p = (py, p,) With p; € L%(Q) for 1 < s; < p*, i € {1, 2} and G3 = 0 such that h(x, s, - ) - p(x)
is linear on (RM)? for a.a. x € Q and for all s € R2 and in addition, we have

[h(x, s, &) = p(xX)| < Gsf¢]

for a.a. x € @, for all s € R? and for all £ € (RV)2.
We obtain the following uniqueness results.

Theorem 4.3. Let hypotheses (H0), (H2), and (U1)—(U3) be satisfied with p, = p, = 2. If
G + Gymax{BL, B} + G2 <1 4.10)

With A = max{(/lfz, ﬂl)‘l, (Afz, BZ)‘l} is satisfied, then there exists a unique nontrivial weak solution of problem (4.1).

Proof. By Theorem 4.2 and hypotheses (H2), there exists at least one nontrivial weak solution of problem (4.1).
Now, letu = (u, up), v = (v, vo) € V be two weak solutions of (4.1). According to the weak formulation of the
problem, we have

[ + 00wy Vodx + [(uy + ,001Vil%29) Vpydx + [upydx + [up,dx
Q Q Q Q

= [hexu, vuy pdx + [kex, uy gdo - B, [wpdo - B, [wp,da,
Q 0Q 0Q 0Q

for ¢ = (¢;, ¢,) € V. Replacing u by v yields an analogous equation. Next, we choose ¢ = u - v and subtract
both equations, which leads to

I|V(u1 - vy)dx + ,[111(X)(|Vu1|ql_zvu1 = [Vv|%~20v) V(1 = vp)dx + J|V(u2 - vp)lPdx
2 2 2

* Jyz(x)(|Vu2|qZ‘2Vu2 = |V, %72Vv,)- V(u, = vp)dx + J|u1 - viffdx + J|u2 - vylfdx
2 2 2

= _[(h(x, u, Vir) - h(x, v, V))-(u - v)dx + I(k(x, 1) - k(x, v))(u - v)do
Q 0Q

- B I|u1 - wf*do - B, I|u2 - v,l*do.
09 a0

Since € — |&|%%¢ is monotone and Ig|ui - yil2dx = 0 for i € {1, 2}, we can estimate
2 2 2 2
IV = vollz + [IV(wz = va)llz + Byllun = vill e + Bollua = vall2 60

[1vs - vpax + [ 9@ - volax + B, [ 1w - viPdo + B, [ - voPdo
Q Q 0Q 0Q

(4.11)

IN

I(h(x, u, Vu) — h(x, v, W))-(u - v)dx + I(k(x, u) - k(x,v))(u - v)do.
Q aQ
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Applying (U1)-(U3) to the right-hand side of (4.11) implies

j(h(x, u, V) - h(x, v, V) - v)dx + j(k(x, u) - K(x, V) - v)do
Q 0Q

_[(h(x, w, Vi) - h(x, v, V))-(u - v)dx
Q

+ I(h(x, v, Vu) - p(x) = h(x,v, W) + p(x))(u - v)dx + I(k(x, u) - k(x,v))(u - v)do
Q 0Q

< _[Gl lu - vf*dx + JGZ lu - v*do + _[h1(X, Vg, Vg, (g = v)V(y = v), (g = v)V( = v2)) — p;(x)dx
o a0 o
+ [ haCx, vi, v, (= V)V = ), (= V)V, - v2)) = py(X)dx
Q
< Gilju = V|5 + Gollu = v|f3g, + st(|u1 =il + g = VoDV — V)P + |Vt - vy)P)edx
Q
1 1
2 2
< Gilju = V| + Gallu = v|igs + G3 I(|u1 =] + up — vof)2dx I|V(u1 = V)PP + [V(up - vy)fPdx
) )
< Gyllu - v[i; + Gollu - vli3g,

1 1
+ Gav2([lu = vall3 + Il = valD2(11V G = VoI + [I9(u2 = V22,

where we have used Hélder’s inequality. In summary, the aforementioned estimates result in

j(h(x, 1, Vir) = h(x, v, W))-(u - v)dx + j(k(x, 1) - k(x, V))(u - v)do
Q 0Q

< Gilu - Vi + Gollu - viay + Gsv2(llts - vil} + [l - VoI @
x (9w = vl + V(2 = v)I)z.
Moreover, choosing p, = p, = 2 and {; = B; > 0 for i € {1, 2} in (4.8) and (4.9) leads to
Izl < Af5) VAl + Billalbee), 2 € WHTH(Q), 4.13)
Izl < Af5) IV2IG + BllZelh00), 22 € WEH(Q). (4.14)

Now, we combine (4.11), (4.12) with (4.13), (4.14) and obtain

IV = vl + V(2 = Vo)l + Billts = vill3 a0 + Ballt = vall5 a0

< Gylluy = viff5 + [uz = vallp) + Ga(ljn = Walf3e + Itz = Vall3g,2)

+ Gav2(|[t = vally + [l = val)=(IIVCs = vl + V(a2 = o))
G5 ) IV = w)IF + Byllts = vall3 50)
+ A58V = vl + Bylltz = valfy 50))
+ Gomax{B,™, B} Byl — villi o + Bolltz = Vally 00)
+ Ga2 (A5 (19 = v)IE + Byl = vl 00)
+ (o) VG = oIl + Byllts = vl 50 ))?
x (|I9Cus = VIR + [IV(uz = v)IB + Byllus = vilBag + Bylltz = vall§ 50)?

= (Gimax{(Afy5)™, (Ahp) ™"} + Gomax{B ", B}

IA

} 1l
+ Gsv/2 max{(Afy 5 )78, (A% ) 112
x (9Quy = vo)lly + [IV(uz = vl + Byllw = Wil o + Byllts = Val3 50)

= (G + Gymax{BL, B} + Gav/21)

x (|[V(uy = vl + [[V(uz = vl + Byllts = vills 00 + Bylltiz = Vall5 50),
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where 1 is defined as above. Finally, we conclude

(19Qw = VI + [IV(uz = VI + Byl = Vil a0 + Bolltz = Vol o)
x (1= (G + Gymax{B;’, B;'} + Gsv/20)) < 0.
Taking (4.10) into account yields
IV = v} + IV = v + Billw = vil3oe + Bolltz = Valf3 a0 = 0.
We know from Pagageorgiou and Winkert [37] that|| - || 2 given by
lullg,2 = IVl + BilulBao)e, @ € {1,23

and || - |l are equivalent norms on W'%(Q). Hence, we have wu; = v; and u, = v,, which completes the
proof. O
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