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Abstract
In this paper we prove the existence of multiple positive solutions for a quasilinear
elliptic problem with unbalanced growth in expanding domains by using variational
methods and the Lusternik–Schnirelmann category theory. Based on the properties
of the category, we introduce suitable maps between the expanding domains and the
critical levels of the energy functional related to the problem,which allowus to estimate
the number of positive solutions by the shape of the domain.
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1 Introduction

Let � ⊆ R
N , N ≥ 2, be a bounded domain with Lipschitz boundary ∂� and let

�λ := λ� be an expanding domain, where λ is a positive number. In this paper we
consider quasilinear elliptic problems with unbalanced growth of the form

A(u) + |u|p−2u + a(x)|u|q−2u = f (u) in �λ,

u = 0 on ∂�λ,
(1.1)

where A(u) is the negative double phase operator given by

A(u) = − div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)

and we suppose the following hypotheses on the data:

(H1) 1 < p < N , p < q < p∗ = Np
N−p and 0 ≤ a(·) ∈ L∞(�λ) is radially

symmetric, that is, a(x) = a(|x |) for a.a. x ∈ �λ.
(H2) The function f : R → R is continuous with primitive F(t) = ∫ t

0 f (s) ds and
f (t) = 0 for all t ≤ 0 such that the following hold:

(i) there exist r ∈ (q, p∗) and C > 0 such that

| f (t)| ≤ C
(
1 + |t |r−1

)

for all t ∈ R;
(ii)

lim
t→0

f (t)

t p−1 = 0;

(iii)

lim
t→∞

F(t)

tq
= ∞;

(iv) f (t)
tq−1 is strictly increasing on (0,∞).

We denote the energy functional associated to Problem 1.1 by

Jλ(u) =
∫

�λ

(
1

p

(|∇u|p + |u|p) + a(x)

q

(|∇u|q + |u|q) − F(u)

)
dx . (1.2)

For simplification, we write Jλ(u) = Iλ(u) − Kλ(u), where

Iλ(u) =
∫

�λ

(
1

p

(|∇u|p + |u|p) + a(x)

q

(|∇u|q + |u|q)
)

dx (1.3)
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and

Kλ(u) =
∫

�λ

F(u) dx . (1.4)

The solutions of Problem 1.1 are understood in the weak sense. Under the assumptions
on f , it is easy to see that Jλ iswell-defined andof classC1 and the solutions of Problem
1.1 are the critical points of Jλ.

Problem 1.1 arises in the study of some non-Newtonian fluids whereby |∇u|p−2 +
a(x)|∇u|q−2 is the viscosity coefficient of the fluid and f (u) − |u|p−2u − a|u|q−2u
is the divergence of shear stress. The solution of Problem 1.1 denotes the speed of the
fluid, see Liu–Dai [30] for more details. Problem 1.1 is called double phase problem
and belongs to the class of problems with unbalanced growth whose ellipticity rate
changes according to the point in the domain. Such type of problems can be used to
characterize the hardening properties of strongly anisotropicmaterials, see for instance
Zhikov [39]. Research on double phase problems also helps us to understand and
advance research on the prescribed mean curvature equation and the Born–Infeld
equation, we refer to papers of Azzollini–d’Avenia–Pomponio [5] and Pomponio–
Watanabe [36] for more related results.

Differential models involving the double phase operator defined by

− div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)

have their origin in the study of the related energy functional given by

F(u) =
∫ (|∇u|p + a(x)|∇u|q) dx . (1.5)

The functionalF in 1.5 belongs to the class of the integral functionalswith nonstandard
growth condition according toMarcellini’s terminology [33, 34]. The regularity theory
for minimizers of F have been considered and achieved sharp results for q > p and
a(·) ≥ 0 by Baroni–Colombo–Mingione [6–8] and Colombo–Mingione [16, 17] in
a series of remarkable papers, which gave new impulse on the studies of the double
phase problems.

Based on several different methods many authors achieved existence and multiplic-
ity results for double phase problems of the form

− div
(
|∇u|p−2∇u + a(x)|∇u|q−2∇u

)
= f (x, u) in �,

u = 0 on ∂�,
(1.6)

where � ⊆ R
N (N ≥ 2) is a domain (bounded or unbounded) and the right-hand side

of 1.6 consists of a Carathéodory function f : � × R → R that satisfies appro-
priate conditions near the origin and/or at infinity. We refer, for example to the
works of Biagi–Esposito–Vecchi [11], Colasuonno–Squassina [15], Farkas–Winkert
[19], Fiscella [23], Gasiński–Papageorgiou [24], Gasiński–Winkert [25], Liu–Dai [28,
30, 31], Liu–Papageorgiou [32], Perera–Squassina [35], Zeng–Bai–Gasiński–Winkert
[38] and the references therein.
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The main objective of this paper is to investigate Problem 1.1 concerning multiple
positive solutions on the expanding domain �λ by applying the method of the Nehari
manifold and the Lusternik–Schnirelmann category theory. The methods used here
were first introduced by Benci–Cerami [9, 10], where they discussed the semilinear
case given in the form

−�u + λu = u p−1 in �, u = 0 on ∂�,

where 2 < p < 2∗ = 2N
N−2 . These works were the starting point to apply these

techniques to other kind of problems in order to obtain multiple solutions.Wemention
the papers of Cingolani–Lazzo [13, 14] for nonlinear Schrödinger equations, Alves–
Figueiredo–Furtado [4], Cingolani–Clapp [12] for nonlinear magnetic Schrödinger
equations, Alves [2], Alves–Ding [3] for p-Laplace equations, Figueiredo–Siciliano
[20], Liu–Dai [29] for fractional Schrödinger equations and Figueiredo–Molica Bisci–
Servadei [21], Figueiredo–Pimenta–Siciliano [22] for fractional Laplacian equations,
see also the references therein. InAit–Mahiout–Alves [1] the authors studied problems
in Orlicz Sobolev spaces of the form

−��u + �(|u|)u = f (u) in �λ, u = 0 on ∂�λ,

where�(t) = ∫ t
0 φ(s)s ds is a N -function and�� denotes the�-Laplacian.We point

out that our �-function (called H, see Sect. 2) depends also on the domain, so on x
which leads to generalized Orlicz Sobolev spaces, also known as Musielak–Orlicz
Sobolev spaces.

In all the above mentioned works the nonlinear terms are of class C1. Then the
related energy functional Jλ belongs to class C2 and so the Nehari manifold Nλ is a
C1-manifold of codimension 1. In that case one can use the method of the Lagrange
multipliers to show that a point u is a nonzero critical point of Jλ if and only if u ∈ Nλ

and u is a critical point for the restriction of Jλ to Nλ. However, in this paper, we
only assume that the nonlinearity f is continuous, which cannot guarantee thatNλ is
a C1-manifold, and so we need a new treatment in order to get similar results. In order
to overcome the non-differentiability ofNλ, we set up a one-to-one correspondencem
between the unit sphere S+ andNλ (see Lemma 2.2), that is,m : S+ → Nλ is defined
by w 
→ m(w). Since S+ is a C1-submanifold, we can find critical points w for the
restriction of �̂ to S+, where �̂ is the energy functional associated with Jλ. Finally,
we can show that m(w) is a critical point for the restriction of Jλ to Nλ (see Lemma
2.3 for more details). This idea is due to Szulkin–Weth [37], who studied the existence
of solutions for a class of Laplace type equations. All in all, our paper extends the
results of the papers mentioned above not only for a more general operator but also
on much more general classes of functions on the right-hand side which do not have
to be differentiable (so no condition on the derivative is assumed) and also do not
satisfy the usual Ambrosetti–Rabinowitz condition as it was supposed, for example,
in Ait–Mahiout–Alves [1] or Alves [2].

In order to state our main result we first recall the definition of the category. We
denote by catB(A) the category of A with respect to B, namely the least integer k such
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that A ⊆ A1 ∪ · · · ∪ Ak with Ai (i = 1, · · · , k) being closed and contractible in B.
We set catB(∅) = 0 and catB(A) = +∞ if there is no integer with the above property.
Furthermore, we set cat(B) := catB(B).

The following theorem is our main result.

Theorem 1.1 Let (H1) and (H2) be satisfied and suppose that the domain �λ is topo-
logically nontrivial, i.e., it is not contractible. Then there exists λ∗ > 0 such that, for
any λ ≥ λ∗, Problem 1.1 admits at least cat(�λ) + 1 positive solutions.

Remark 1.2 The weight function a(·) is the essential characteristic of the double phase
operator. It is the distinguishing feature of the double phase operator that is different
from other operators like the p-Laplacian and the (p, q)-Laplacian. The two map-
pings we constructed when estimating the number of solutions are both affected by
a(·). Indeed, �λ is radially symmetric (see Sects. 4 and 5), which requires that a(·)
is a radially symmetric function, since when a(·) is a radially symmetric function,
the corresponding double phase problem has a radially symmetric solution. When
estimating β(·), the weight function a(·) is also required to be radially symmetrical
(see Lemmas 4.2 and 5.2). In addition, when we prove compactness, we also require
a(·) to be radially symmetric (see Lemma 3.2). When a(·) is not a radially symmetric
function, it is an interesting question whether the conclusion of this paper holds.

The proof of Theorem 1.1 is based on the Lusternik–Schnirelmann category theory.
We first prove that �̂ has at least cat(S̃+) critical points on S+, where S̃+ is a subset of
S+. Then we construct suitable maps between S̃+ and �λ. Using the properties of the
category, we can show that cat(S̃+) ≥ cat(�λ), that is, S+ contains at least cat(�λ)

critical points of �̂. After that, we prove that there exists another critical point of �̂.
Finally, by the relationship between �̂ and Jλ, we know that Jλ has at least cat(�λ)+1
critical points, that is, Problem 1.1 admits at least cat(�λ) + 1 positive solutions.

The rest of this paper is organized as follows. In Sect. 2, we will introduce the
Musielak–Orlicz Sobolev spaces in which we will work and the mapping between S+
andNλ. Two compactness results are given in Sect. 3 and Sect. 4 is devoted to estimate
the asymptotic behavior of some critical levels. The proof of Theorem 1.1 is provided
in Sect. 5.

2 TheMusielak–Orlicz Sobolev Spaces and theMapping Between the
Unit Sphere and the Nehari Manifold

First, we recall some fact about Musielak–Orlicz Sobolev spaces. To this end, let
D ⊆ R

N and letH : D × [0,+∞) → [0,+∞) defined by

H(x, t) = t p + a(x)tq for all (x, t) ∈ D × [0,+∞)

while we suppose (H1). The corresponding H-modular is then given by

ρH(u) =
∫

D
H(x, |u|) dx =

∫

D
(|u|p + a(x)|u|q) dx .
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Denoting by M(D) the set of all measurable functions u : D → R, the Musielak–
Orlicz space LH(D) is defined by

LH(D) = {u ∈ M(D) : ρH(u) < ∞} ,

equipped with the norm

‖u‖H = inf

{
μ > 0 : ρH

(
u

μ

)
≤ 1

}
.

The space W 1,H(D) is defined by

W 1,H(D) =
{
u ∈ LH(D) : |∇u| ∈ LH(D)

}
,

endowed with the norm

‖u‖ = ‖u‖H + ‖∇u‖H

with ‖∇u‖H = ‖ |∇u| ‖H. We denote by W 1,H
0 (D) the completion of C∞

0 (D) in

W 1,H(D). From now on, for any u ∈ W 1,H
0 (D) (D ⊆ R

N ), we denote with the same
symbol its extension to R

N obtained by setting u ≡ 0 outside of D.
Next, let

W 1,H
r (RN ) =

{
u ∈ W 1,H(RN ) : u is radially symmetric

}
.

The first two authors [30] proved that

W 1,H
r (RN ) ↪→ Lγ (RN ) continuously for all γ ∈ [p, p∗];

W 1,H
r (RN ) ↪→ Lγ (RN ) compactly for all γ ∈ (p, p∗).

For more details on the spaces, we refer to Liu–Dai [28, 30] and Perera–Squassina
[35].

We denote the positive part of a function u by u+ = max{u, 0} and write X :=
W 1,H

0 (�λ). We define

S+ = {
u ∈ X : ‖u‖ = 1 and u+ �= 0

}
.

The Nehari manifold related to Problem 1.1 is defined by

Nλ = {
u ∈ X \ {0} : 〈J ′

λ(u), u〉 = 0
}
.

Then we have the following properties.

Lemma 2.1 Let (H1) and (H2) be satisfied. Then the following hold:
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(i) For each w ∈ X with w+ �= 0, set hw(t) = Jλ(tw), there exists a unique
tw > 0 such that h′

w(t) > 0 if 0 < t < tw and h′
w(t) < 0 if t > tw, that is,

maxt∈[0,+∞) hw(t) is achieved at t = tw and tww ∈ Nλ.
(ii) There exists δ > 0 such that tw ≥ δ for w ∈ S+ and for each compact subset

W ⊆ S+ there exists a constant CW such that tw ≤ CW for all w ∈ W .

Proof (i) Let w ∈ X with w+ �= 0 be fixed and define hw(t) = Jλ(tw) on [0,∞). It
is clear that hw(0) = 0. From (H2)(i), (ii) we deduce that

hw(t) =
∫

�λ

(
t p

p

(|∇w|p + |w|p) + a(x)tq

q

(|∇w|q + |w|q)
)

dx −
∫

�λ

F(tw) dx

≥
∫

�λ

(
t p

p

(|∇w|p + |w|p) + a(x)tq

q

(|∇w|q + |w|q)
)

dx

−
∫

�λ

(
εt p|w|p + Cεt

r |w|r ) dx

≥ t p

2p

∫

�λ

(|∇w|p + |w|p) dx + tq

q

∫

�λ

a(x)
(|∇w|q + |w|q) dx

− Cεt
r
∫

�λ

|w|r dx

= C1t
p + C2t

q − C3t
r for 0 < ε <

1

2p
,

which implies that hw(t) > 0 for t small enough. It follows from (H2)(iii) that, for
any M > 0, there exists TM > 0 such that F(t) ≥ Mtq for t > TM . Using this gives

hw(t) ≤
∫

�λ

(
t p

p

(|∇w|p + |w|p) + a(x)tq

q

(|∇w|q + |w|q)
)

dx

− M
∫

�λ

tq |w|q dx − C

= C1t
p + C2t

q − C3Mtq − C

≤ C1t
p − C2t

q − C for M ≥ 2C2

C3
,

which implies that hw(t) < 0 for t large enough. Hence we can find tw > 0 such that
h′

w(tw) = 0. Moreover, from

0 = h′
w(t) =

∫

�λ

(
t p−1 (|∇w|p + |w|p) + a(x)tq−1 (|∇w|q + |w|q)

)
dx

−
∫

�λ

f (tw)w dx,
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we get tw ∈ Nλ and

∫

�λ

a(x)
(|∇w|q + |w|q) dx

=
∫

�λ

f (tw)w

tq−1 dx − 1

tq−p

∫

�λ

(|∇w|p + |w|p) dx .
(2.1)

Taking (H2)(iv) into account, the right-hand side of the last equality is a strictly
increasing function in t . This implies that hw(·) has a unique critical point. Thus
maxt∈[0,+∞) hw(t) is achieved at the unique point t = tw > 0 so that h′

w(tw) = 0 and
tww ∈ Nλ.

(ii) First, we show that there exists δ > 0 such that tw > δ for w ∈ S+. If tw ≥ 1
we are done. If tw < 1, we deduce from tww ∈ Nλ, (H2)(i) and (H2)(ii) that

∫

�λ

(
t pw

(|∇w|p + |w|p) + a(x)tqw
(|∇w|q + |w|q)) dx

=
∫

�λ

f (tww)tww dx

≤ εt pw

∫

�λ

|w|p dx + Cεt
r
w

∫

�λ

|w|r dx

or

1

2
tqw ≤ 1

2

∫

�λ

(
t pw

(|∇w|p + |w|p) + a(x)tqw
(|∇w|q + |w|q)) dx ≤ C2t

r
w.

Obviously we can take δ =
(

1
2C2

) 1
r−q

> 0 in this case.

Now, let W ⊆ S+ be compact and suppose by contradiction that there exists a
sequence {wn}n∈N ⊆ W with tn := twn → +∞. By (i), we see that Jλ(tnwn) =
maxt∈[0,+∞) Jλ(twn) ≥ 0. On the other hand, by (H2)(iii), we deduce that

0 ≤ Jλ(tnwn)

tqn
≤ 1

p
−

∫

�λ

F(tnwn)

tqn
dx → −∞ as n → ∞,

which is a contradiction. Thus there exists CW such that tw ≤ CW . ��
Let

m̂ : X \ {0} → Nλ, w 
→ m̂(w) := tww,

where tw is defined in Lemma 2.1 and let m := m̂|S+ . Then we can show that m is a
one-to-one correspondence between S+ and Nλ.

Lemma 2.2 Let (H1) and (H2) be satisfied. Then the following hold:

(i) The mapping m̂ is continuous.
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(ii) The mapping m is a homeomorphism between S+ andNλ, and the inverse of m is
given by m−1(w) = w

‖w‖ for all w ∈ Nλ.

Proof (i) Suppose that wn → w in X \ {0}. Taking Lemma 2.1 (ii) into account, we
see that {twn }n∈N is uniformly bounded in n. Therefore, we can find a subsequence
of {twn }n∈N (which we still denote by {twn }n∈N) converging to a limit, say t0. It
follows from 2.1 that t0 = tw. But then twn → tw. Hence m̂ is continuous.

(ii) By (i), we can easily see thatm(S+) is a bounded set in X and for anyw ∈ m(S+),
there exists δ > 0 such that ‖w‖ ≥ δ. If ‖w‖ ≥ 1 we are done. If ‖w‖ < 1 then
we have

∫

�λ

(|∇w|p + |w|p + a(x)
(|∇w|q + |w|q)) dx

=
∫

�λ

f (w)w dx ≤ ε

∫

�λ

|w|p dx + Cε

∫

�λ

|w|r dx

or

1

2
‖w‖q ≤ 1

2

∫

�λ

(|∇w|p + |w|p + a(x)
(|∇w|q + |w|q)) dx

≤ Cε

∫

�λ

|w|r dx ≤ C‖w‖r .

Choosing δ = ( 1
2C

) 1
r−q > 0 gives ‖w‖ ≥ δ. The continuity of m̂ and its definition

imply that the mapping m : S+ → Nλ is continuous and one-to-one. Clearly, the
inverse function of m is m−1(w) = w

‖w‖ for any w ∈ Nλ. We only have to show that

m−1 is continuous. One has

∥∥∥m−1(w) − m−1(v)

∥∥∥ =
∥∥∥∥

w

‖w‖ − v

‖v‖
∥∥∥∥ =

∥∥∥∥
w − v

‖w‖ + v (‖v‖ − ‖w‖)
‖w‖‖v‖

∥∥∥∥

≤ 2‖w − v‖
‖w‖ ≤ 2

δ
‖w − v‖,

which shows that m−1 is Lipschitz continuous. ��
Recall that J satisfies the (PS)-condition on Nλ, if any sequence {un}n∈N ⊆ Nλ

such that

J (un) → c and J ′(un) → 0 (2.2)

for any c ∈ R, admits a convergent subsequence. Any sequence satisfying 2.2 is called
a (PS)c-sequence or (PS)-sequence. Defining �̂(w) := Jλ(m̂(w)), we show next that
the problem of finding critical points of �̂|S+ is equivalent to the problem of finding
critical points of Jλ|Nλ

.
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Lemma 2.3 Let (H1) and (H2) be satisfied. Then the following hold:

(i) �̂ ∈ C1(X \ {0},R) and

〈�̂ ′(w), z〉 = 〈J ′
λ(m(w)), ‖m(w)‖z〉

for all w ∈ S+ and for all z ∈ Tw(S+), where Tw(S+) denotes the tangent space
to S+ at w.

(ii) If {wn}n∈N ⊆ S+ is a (PS)-sequence for �̂, then {m(wn)}n∈N ⊆ Nλ is a (PS)-
sequence for Jλ. If {un}n∈N ⊆ Nλ is a bounded (PS)-sequence for Jλ, then
{m−1(un)}n∈N ⊆ S+ is a (PS)-sequence for �̂.

(iii) w ∈ S+ is a critical point of �̂ if and only if m(w) ∈ Nλ is a nontrivial critical
point of Jλ. Moreover, infS+ �̂ = infNλ

Jλ.

Proof The lemma is a direct consequence of Proposition 9 andCorollary 10 inSzulkin–
Weth [37] and Lemmas 2.1 and 2.2. ��
Remark 2.4 Obviously, from Lemmas 2.1 and 2.2, we see that the infimum of Jλ over
Nλ has the following minimax characterization:

c(�λ) := inf
u∈Nλ

Jλ(u) = inf
w∈X\{0}max

s>0
Jλ(sw) = inf

w∈S+
max
s>0

Jλ(sw) = inf
w∈S+

�̂(w).

Note that c(�λ) > 0. In fact, for any w ∈ X \ {0}, we know from the proof of Lemma
2.1 (i) that maxs>0 Jλ(sw) ≥ δw for some δw > 0. From Lemma 2.1 (ii) we can find
δ > 0 such that δw ≥ δ uniformly for w ∈ X \ {0}. Hence

c(�λ) = inf
w∈X\{0}max

s>0
Jλ(sw) ≥ δ > 0.

3 Two Compactness Results

First, we prove that �̂ satisfies the (PS)-condition on S+.

Lemma 3.1 Let (H1) and (H2) be satisfied. Then the following hold:

(i) If {wn}n∈N ⊆ S+ is a sequence such that dist(wn, ∂S+) → 0 as n → +∞. Then
‖m(wn)‖ → +∞ and �̂(wn) → +∞ as n → +∞.

(ii) �̂ satisfies the (PS)-condition on S+, that is, every sequence {wn}n∈N in S+ such
that, for any c > 0, �̂(wn) → c and �̂ ′(wn) → 0 as n → +∞ contains a
subsequence which converges strongly to some w ∈ S+ and dist(w, ∂S+) > 0.

Proof (i) Let {wn}n∈N ⊆ S+ be a sequence such that dist(wn, ∂S+) → 0 as n → +∞.
Then, for any v ∈ ∂S+ and n ∈ N, we have w+

n ≤ |wn − v| a.e. in �λ. For any
γ ∈ [1, p∗], by the embedding theorem, we have

‖w+
n ‖Lγ (�λ) ≤ inf

v∈∂S+
‖wn − v‖Lγ (�λ) ≤ Cγ inf

v∈∂S+
‖wn − v‖ = Cγ dist(wn, ∂S+)
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for all n ∈ N. Recall that f (t) ≡ 0 for t ≤ 0. For every t > 0, it follows from (H2)(i)
and (H2)(ii) that

|K (twn)| =
∣∣∣∣∣
∫

�
≤
λ

F(twn) dx +
∫

�>
λ

F(twn) dx

∣∣∣∣∣ =
∣∣∣∣
∫

�λ

F(tw+
n ) dx

∣∣∣∣

≤ εt p
∫

�λ

|w+
n |p dx + Cεt

r
∫

�λ

|w+
n |r dx

≤ C
(
t p dist p(wn, ∂S+) + tr distr (wn, ∂S+)

) → 0 as n → +∞,

where �>
λ = {x ∈ �λ : wn(x) > 0} and �

≤
λ = �λ \ �>

λ . Note that for any t > 1,

1

p
‖twn‖q + |K (twn)| ≥ Jλ(twn) ≥ 1

q
‖twn‖p − |K (twn)| = t p

q
− |K (twn)|.

Consequently

lim inf
n→+∞

1

p
‖m(wn)‖q ≥ lim inf

n→+∞ �̂(wn) ≥ lim inf
n→+∞ Jλ(twn) ≥ t p

q
, for every t > 1,

and thus ‖m(wn)‖ → +∞ and �̂(wn) → +∞ as n → +∞.
(ii) For any c > 0, let {wn}n∈N ⊆ S+ be a (PS)c-sequence for �̂. It follows

from Lemma 2.3 that {un := m(wn)}n∈N ⊆ Nλ is a (PS)c-sequence for Jλ. First we
will prove that {un}n∈N is bounded. Suppose this is not the case, then there exists a
subsequence (still denoted by un) such that ‖un‖ → +∞. Set vn = un/‖un‖, then
{vn}n∈N is bounded. Thus, after passing to a subsequence if necessary, wemay assume
that vn⇀v in X as n → +∞. If v = 0, then it follows from Lemma 2.1 and Remark
2.4 that

c + o(1) ≥ Jλ(un) = Jλ(tvnvn) ≥ Jλ(tvn) for all t > 0.

Recall that K is weakly continuous. If t > 1, then we have that

Jλ(tvn) ≥ 1

q
t p −

∫

�λ

F(tvn) dx → 1

q
t p.

This yields a contradiction by choosing t > max{1, 2(qc) 1
p }. If v �= 0, then we know

from (H2)(iii) that

0 ≤ Jλ(un)

‖un‖q ≤ 1

p
−

∫

�λ

F(‖un‖vn)
‖un‖q dx → −∞

as n → ∞, again a contradiction. Hence {un}n∈N is bounded and so there exists
a subsequence of {un}n∈N (still denoted by un) such that un⇀u in X . Recall that
K ′

λ(un) → K ′
λ(u). Since J ′

λ(un) = Lλ(un) − K ′
λ(un) → 0, one has that Lλ(un) →
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K ′
λ(u) as n → +∞, where Lλ denotes the derivative operator of Iλ in the weak sense.

Therefore, we conclude that un → u in X as n → +∞, since Lλ is a mapping of type
(S+). Consequentlym−1(un) → m−1(u) by Lemma 2.2, that is, wn → w. Therefore,
�̂ satisfies the (PS)-condition on S+. ��

Our second compactness result is related to the limiting functional associated to
Jλ, which is defined in the whole space. More precisely,

J∞(u) :=
∫

RN

(
1

p

(|∇u|p + |u|p) + a(x)

q

(|∇u|q + |u|q) − F(u)

)
dx .

The corresponding Nehari manifold is defined by

N∞ :=
{
u ∈ W 1,H

r (RN ) \ {0} : 〈J ′∞(u), u〉 = 0
}

while the least energy level is given by

0 < c(RN ) := inf
u∈N∞

J∞(u).

In Liu–Dai [30, Theorem 1.9], it is proved that c(RN ) is achieved by a positive radially
symmetric function. Moreover, we can show the following compactness lemma. The
idea used here is due to Alves [2], who studied the p-Laplacian equation.

Lemma 3.2 Let (H1) and (H2) be satisfied and let {wn}n∈N ⊆ N∞ be such that
J∞(wn) → c(RN ). Then either {wn}n∈N has a strongly convergent subsequence
or there exists a sequence {yn}n∈N ⊆ R

N with |yn| → +∞ such that {w̃n(x) :=
wn(x + yn)}n∈N has a strongly convergent subsequence.

Proof Let {wn}n∈N ⊆ N∞ be such that J∞(wn) → c(RN ). As in the proof of Lemma
3.1 (ii), we can show that wn⇀w, up to a subsequence if necessary. If w �= 0, then,
as in Liu–Dai [30, Sect. 6], we can prove that K ′∞ is completely continuous, that
is, K ′∞(wn) → K ′∞(w). Since J ′∞(wn) = L∞(wn) − K ′∞(wn) → 0, one has that
L∞(wn) → K ′∞(w) as n → +∞, where L∞ denotes the derivative operator of I∞
in the weak sense, K∞ and I∞ are defined as in 1.4 and 1.3, just replacing �λ by RN ,
respectively. Then we conclude that wn → w as n → +∞ since L∞ is a mapping
of type (S+) (see Liu–Dai [30] or Crespo–Blanco–Gasiński–Harjulehto–Winkert [18]
for more details). It is clear that w ∈ N∞ and J∞(w) = c(RN ) since J∞ ∈ C1.

If w = 0, then we claim that there exist R, δ > 0 and {yn}n∈N ⊆ R
N such that

lim sup
n→+∞

∫

BR(yn)
|wn|p dx ≥ δ. (3.1)

Let us suppose this is not the case. Then we have

lim sup
n→+∞

sup
y∈RN

∫

BR(y)
|wn|p dx = 0.

123



Applied Mathematics & Optimization            (2024) 90:13 Page 13 of 23    13 

It follows from Lions [26, 27, Lemma I.1] that wn → 0 in Lα(RN ) for α ∈ (p, p∗).
Consequently, as in the proof of Lemma 2.1, we have

∫

RN
f (wn)wn dx → 0

by (H2)(i) and (H2)(ii). Recalling that {wn}n∈N ⊆ N∞, we have ‖wn‖ → 0 as
n → +∞. Consequently J∞(wn) → 0, a contradiction to c(RN ) > 0.

Next, we claim that |yn| → +∞. Assume this is not true, then there exists M > 0
such that |yn| ≤ M . Set R̂ := M + R + 1. Since the embedding W 1,H(BR̂(0)) ↪→
L p(BR̂(0)) is compact (see Liu–Dai [30]), we deduce that ‖wn‖L p(BR̂(0)) → 0, which
contradicts 3.1, since ‖wn‖L p(BR̂(0)) ≥ ‖wn‖L p(BR(yn)). Now, we define w̃n(x) =
wn(x + yn) and apply the argument used in the case w �= 0 again, with wn replaced
by w̃n , to obtain w̃n → w̃ ∈ N∞ with J∞(w̃) = c(RN ). This finishes the proof. ��

4 Some Estimates

For R̃ > R > 0, we need two auxiliary functionals which are defined as in 1.2, just
replacing �λ by BR := BR(0) and AR̃,R(x̃) := BR̃(x̃) \ BR(x̃) for all x̃ ∈ R

N ,
respectively, that is,

JR(u) =
∫

BR

(
1

p

(|∇u|p + |u|p) + a(x)

q

(|∇u|q + |u|q) − F(u)

)
dx,

Jλ,x̃ (u) =
∫

A
λR̃,λR(x̃)

(
1

p

(|∇u|p + |u|p) + a(x)

q

(|∇u|q + |u|q) − F(u)

)
dx .

The corresponding Nehari manifolds are given by

NR :=
{
u ∈ W 1,H

0 (BR) \ {0} : 〈J ′
R(u), u〉 = 0

}

Nλ,x̃ :=
{
u ∈ W 1,H

0 (A
λR̃,λR(x̃)) \ {0} : 〈J ′

λ,x̃ (u), u〉 = 0
}

.

We set

c(BR) := inf
u∈NR

JR(u). (4.1)

Then c(BR) is achieved by a positive radially symmetric function �R . Indeed, similar
to the proof of Liu–Dai [30, Theorem 1.4], we can show that c(BR) is attained by a
positive function v ∈ W 1,H

0 (BR). Let v∗ be the Schwartz symmetrization of v, then
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we have that v∗ ∈ W 1,H
0 (BR) and it satisfies

∫

BR

(
1

p
|∇v∗|p + a(x)

q
|∇v∗|q

)
dx ≤

∫

BR

(
1

p
|∇v|p + a(x)

q
|∇v|q

)
dx,

∫

BR

(
1

p
|v∗|p + a(x)

q
|v∗|q

)
dx =

∫

BR

(
1

p
|v|p + a(x)

q
|v|q

)
dx

and
∫

BR

F(v∗) dx =
∫

BR

F(v) dx .

As in Lemma 2.1, we can show that there exists a unique tv∗ > 0 such that tv∗v∗ ∈ NR .
Moreover, it holds

c(BR) ≤ JR(tv∗v∗) ≤ JR(tv∗v) ≤ max
t≥0

JR(tv) = JR(v) = c(BR).

Set �R := tv∗v∗.Then �R has all the required properties. Furthermore, we can study
the asymptotic behavior of c(BR).

Lemma 4.1 Let (H1) and (H2) be satisfied and let c(�λ) and c(BR) be defined as in
Remarks 2.4 and 4.1, respectively. Then

lim
λ→+∞ c(�λ) = c(RN ) and lim

R→+∞ c(BR) = c(RN ).

Proof We only show the first assertion, the second one can be done in a similar way.
To this end, let λ̃ > 0 and R > 0 be fixed such that BR ⊆ �λ̃. Let ηR : [0,+∞) → R

be a smooth nonincreasing cut-off function defined by

ηR(t) = 1 if 0 ≤ t ≤ R/2, ηR(t) = 0 if t ≥ R, 0 ≤ ηR ≤ 1 and
∣∣η′

R(t)
∣∣ ≤ 2.

We write wR(x) = ηR(x)w(x), where w ∈ N∞ is such that J∞(w) = c(RN ). In
addition, let tR > 0 be such that tRwR ∈ Nλ. Then we have

c(�λ) ≤ Jλ(tRwR) for all λ > λ̃.

Passing to the limit as λ → +∞ we obtain

lim sup
λ→+∞

c(�λ) ≤ J∞(tRwR).

As in the proof of Lemma 2.1 we can show that tR → 1 as R → +∞. Then
J∞(tRwR) → J∞(w) = c(RN ) as R → +∞. Consequently, we get

lim sup
λ→+∞

c(�λ) ≤ c(RN ). (4.2)
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On the other hand, from the definition of c(�λ) and c(RN ), it follows that c(RN ) ≤
c(�λ) for all λ > 0, which implies that

c(RN ) ≤ lim inf
λ→+∞ c(�λ). (4.3)

From 4.2 and 4.3 the assertion follows. ��
Nowwe choose R̃ ≥ diam(�). For u ∈ W 1,H(RN )with compact support in BR̃(0),

we define the barycenter map β : W 1,H(RN ) \ {0} → R
N by

β(u) =

∫

RN
x |u(x)|p dx

∫

RN
|u(x)|p dx

. (4.4)

Using the map β we can show the following estimate.

Lemma 4.2 Let (H1) and (H2) be satisfied and let

ã(λ, R, R̃, x̃) := inf
{
Jλ,x̃ (u) : u ∈ Nλ,x̃ and β(u) = x̃

}
.

Then it holds

lim inf
λ→+∞ ã(λ, R, R̃, x̃) > c(RN )

and in particular,

lim inf
λ→+∞ ã(λ, R, R̃, 0) > c(RN ).

Proof By the translation invariance of the Lebesgue integral and the symmetry of u,
we know that

ã(λn, R, R̃, 0) = ã(λn, R, R̃, x̃).

Hence it suffices to prove that

lim inf
λ→+∞ ã(λ, R, R̃, 0) > c(RN ).

It is clear from the definitions of ã(λ, R, R̃, 0) and c(RN ) that

ã(λ, R, R̃, 0) ≥ c(RN ).

We only need to show that

lim inf
λ→+∞ ã(λ, R, R̃, 0) �= c(RN ).
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Suppose this is not true, then there exists a sequence {λn}n∈N such that

ã(λn, R, R̃, 0) → c(RN ) as n → +∞.

Here we set λn → +∞ as n → +∞. As in the proof of Lemma 3.1, we can show that
Jλn ,0 satisfies the (PS)-condition on A

λn R̃,λn R
(0), and so ã(λn, R, R̃, 0) are attained by

positive radially symmetric functions. Therefore, there exists a sequence {un}n∈N ⊆
Nλn ,0 such that

βλn (un) = 0 and Jλn ,0(un) = ã(λn, R, R̃, 0).

Note that supp un ⊆ B
λn R̃

(0) \ Bλn R(0). Thus un⇀0 as n → +∞. It is clear that

un �→ 0 since c(RN ) > 0. Thus it follows fromLemma 3.2 that there exists a sequence
{yn}n∈N ⊆ R

N with |yn| → +∞ such that

un(x) = vn(x − yn) + �(x − yn),

where {vn}n∈N is a sequence converging strongly to 0 in X while � is a nonnegative
function satisfying J∞(�) = c(RN ) and � ∈ N∞. We write

M :=
∫

RN
|�(x)|p dx > 0.

From vn → 0 in X , we conclude that

∫

Bλn R/2(yn)
|vn(x − yn) + �(x − yn)|p dx =

∫

Bλn R/2(0)
|vn(x) + �(x)|p dx → M,

which implies

∫

�n

|un|p dx → M, where �n := Bλn R/2(yn) ∩ A
λn R̃,λn R

(0).

Thus,

∫

�̃n

|un|p dx → 0, where �̃n := A
λn R̃,λn R

(0) \ Bλn R/2(yn). (4.5)

Since J∞ is rotation invariant, we may assume that yn = (y1n , 0, · · · , 0) with y1n < 0.
Hence, it follows from βλn (un) = 0 that

0 =
∫

A
λn R̃,λn R

(0)
x1|un|p dx =

∫

�n

x1|un|p dx +
∫

�̃n

x1|un|p dx,
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where x1 is the first coordinate of x . It is easy to check that

∫

�n

x1|un|p dx ≤ −λn R

2
(M + on(1))

and

∫

�̃n

x1|un|p dx ≤ λn R̃
∫

�̃n

|un|p dx,

where on(1) → 0 as n → +∞. Therefore, we have

0 ≤ −λn R

2
(M + on(1)) + λn R̃

∫

�̃n

|un|p dx,

that is,

∫

�̃n

|un|p dx ≥ R

2R̃
(M + on(1)),

which contradicts 4.5. ��

5 Proof of Theorem 1.1

In what follows, without any loss of generality, we shall assume that 0 ∈ �. Moreover,
we fix real numbers R̃ > R > 0 such that BR(0) ⊆ � ⊆ BR̃(0) and the sets

�+
R :=

{
x ∈ R

N : dist(x,�) ≤ R
}

and �−
R := {x ∈ � : dist(x, ∂�) ≥ R}

are homotopically equivalent to �. For λ > 0, let �λR ∈ NλR be given as in Sect. 4
satisfying JλR(�λR) = c(BλR). We define �λ : λ�−

R → Nλ by

[�λ(ξ)](x) =
{
tλ�λR(|x − ξ |), if x ∈ BλR(ξ),

0, if x ∈ �λ \ BλR(ξ),

where tλ > 0 is such that �λ(ξ) ∈ Nλ. Then we have the following lemma.

Lemma 5.1 Let (H1) and (H2) be satisfied. Then we have

lim
λ→+∞ Jλ(�λ(ξ)) = c(RN )

uniformly in ξ ∈ λ�−
R .
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Proof Following the same arguments as in the proof of Lemma 2.1 and Remark 2.4,
it is easy to see that

c(�λ) ≤ Jλ(�λ(ξ)) = Jλ(tλ�λR(|x − ξ |))
= Jλ(tλ�λR(|x |)) ≤ Jλ(�λR(|x |)) = c(BλR).

Here we have used the translation invariance of the Lebesgue integral in the sec-
ond equality. Lemma 4.1 gives that limλ→+∞ c(BλR) = limλ→+∞ c(�λ) = c(RN ).
Hence our conclusion holds. ��

Given ξ ∈ λ�−
R , we set h(λ) := |Jλ(�λ(ξ)) − c(RN )|. We conclude from Lemma

5.1 that h(λ) → 0 as λ → +∞. Next, we define the sublevel set

Ñλ =
{
u ∈ Nλ : Jλ(u) ≤ c(RN ) + h(λ)

}
.

It is clear that �λ(ξ) ∈ Ñλ, which implies Ñλ �= ∅ for any λ > 0. Furthermore, we
have the following result.

Lemma 5.2 Let (H1) and (H2) be satisfied. Then there exists λ∗ > 0 such that, for
any λ ≥ λ∗, if u ∈ Ñλ, then β(u) ∈ λ�+

R , where β is defined in (4.4).

Proof We argue by contradiction and assume that there exist λn → +∞ as n → +∞
and un ∈ Ñλn such that β(un) =: xn /∈ λn�

+
R . We can choose R̃ > diam(�) such

that

�λn ⊆ A
λn R̃,λn R

(xn). (5.1)

Indeed, if x ∈ �λn then x/λn ∈ �. Note that xn/λn /∈ �+
R since xn /∈ λn�

+
R . Hence|x/λn − xn/λn| > R, that is, |x − xn| > λn R. Consequently, x /∈ Bλn R(xn). Since

x ∈ �λn , there exists y ∈ � such that x = λn y. Therefore, it follows that

|x − xn| =
∣∣∣∣∣x −

∫
�λn

z|u(z)|p dz∫
�λn

|u(z)|p dz

∣∣∣∣∣ ≤ λn

∣∣∣∣∣∣

∫
�λn

∣∣∣y − z
λn

∣∣∣ |u(z)|p dz
∫
�λn

|u(z)|p dz

∣∣∣∣∣∣
.

Note that z/λn ∈ �, y ∈ � and � ⊆ BR̃(0). Hence |y − z/λn| ≤ R̃. Thus,

|x − xn| ≤ λn R̃,

that is, x ∈ B
λn R̃

(xn), and so 5.1 holds. From 5.1 it follows that

ã(λn, R, R̃, 0) = ã(λn, R, R̃, xn) ≤ Jλn (un) ≤ c(RN ) + h(λn).
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Letting n → +∞, Lemma 5.1 implies that h(λn) → 0 and so

lim sup
n→+∞

ã(λn, R, R̃, 0) ≤ c(RN ),

which contradicts Lemma 4.2. ��
Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 We conclude from Lemmas 5.1 and 2.3 that

lim
λ→+∞ �̂(m−1(�λ(ξ))) = lim

λ→+∞ Jλ(�λ(ξ)) = c(RN )

uniformly in ξ ∈ λ�−
R . We write

S̃+ =
{
u ∈ S+ : �̂(u) ≤ c(RN ) + h(λ)

}
,

where h is given in the definition of Ñλ. It is clear that S̃+ �= ∅, since m−1(�λ(ξ)) ∈
S̃+. From Lemma 3.1 and the Lusternik–Schnirelmann theory (see Szulkin–Weth [37,
Theorem 27]), it follows that �̂ has at least cat(S̃+) critical points on S̃+. Lemmas
5.1, 5.2 and 2.3 imply that there exists λ∗ > 0 such that, for any λ ≥ λ∗, the diagram

λ�−
R

�λ−→ Ñλ
m−1−−→ S̃+

m−→ Ñλ
β−→ λ�+

R

is well defined and β ◦m ◦m−1 ◦�λ is homo topic to the inclusion id : λ�−
R → λ�+

R .
Hence

cat(S̃+) ≥ catλ�+
R
(λ�−

R ) = cat(�λ). (5.2)

Indeed, suppose that cat(S̃+) = n, that is, there exists a smallest positive integer n
such that

S̃+ ⊆ D1 ∪ D2 ∪ · · · ∪ Dn,

where Di , i = 1, 2, · · · , n are closed and contractible in S̃+, that is, there exist

hi ∈ C([0, 1] × Di , S̃+), i = 1, 2, · · · , n

such that

hi (0, u) = u for all u ∈ Di ,

hi (1, u) = ωi ∈ S̃+ for all u ∈ Di .
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We set

Ki = �−1
λ (m(Di )).

Clearly Ki are closed subsets of λ�−
R and λ�−

R ⊆ K1 ∪ · · · ∪ Kn . Moreover Ki ,
i = 1, · · · , n are contractible in λ�+

R using the deformation hi : [0, 1] × Ki → λ�+
R

defined by

hi (t, x) = (β ◦ m ◦ hi )(t,m
−1(�λ(x))).

We conclude from Lemmas 5.1 and 5.2 that

hi ∈ C([0, 1] × Ki , λ�+
R ),

hi (0, x) = (β ◦ m ◦ hi )(0,m
−1(�λ(x))) = x for all x ∈ Ki ,

hi (1, x) = (β ◦ m ◦ hi )(1,m
−1(�λ(x))) = β(m(ωi )) = xi ∈ λ�+

R for all x ∈ Ki .

Hence

catλ�+
R
(λ�−

R ) ≤ n,

that is, 5.2 holds, which implies that S̃+ contains at least cat(�λ) critical points of �̂.
Now we prove that there exists another critical point of �̂. Let

M := m−1(�λ(λ�−
R ))

and note thatM is non-contractible in S̃+ since �λ is not contractible. Next, we will
prove that there exists an energy level d > c(RN ) + h(λ) such thatM is contractible
in Sd+ := {u ∈ S+ : �̂(u) ≤ d}. In order to do that, we choose u∗ ∈ S+ such that
�̂(u∗) > c(RN ) + h(λ) and define the set

C := {
θu∗ + (1 − θ)u : θ ∈ [0, 1], u ∈ M}

.

It is clear that C is compact and contractible, moreover 0 /∈ C. Then we can define a
continuous projection PS+ from C onto S+ by

PS+(C) =
{
m−1(m̂(w)) : w ∈ C

}
.

Set

d := max
w∈PS+ (C)

�̂(w).

It is obvious that d > c(RN ) + h(λ) and PS+(C) is contractible in Sd+. Note that
M ⊆ PS+(C) ⊆ S+, and so M is also contractible in Sd+. Consequently, it follows
from Szulkin–Weth [37, Theorem 27] that there exists another critical point of �̂ in

123



Applied Mathematics & Optimization            (2024) 90:13 Page 21 of 23    13 

Sd+ \ S̃+. Thus we conclude from Lemma 2.3 that there exist at least cat(�λ) + 1
critical points of Jλ, that is, Problem 1.1 has at least cat(�λ) + 1 positive solutions. ��
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