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a b s t r a c t

The existence of solutions of opposite constant sign is proved for a Dirichlet
problem driven by the weighted (p, q)-Laplacian with q < p and exhibiting a
(q − 1)-order term as well as a convection term. The approach is based on the
method of sub–supersolution. Extremal solutions in relevant ordered intervals are
obtained as well.
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1. Introduction

Let Ω ⊂ RN be a bounded domain with a C2-boundary ∂Ω . We consider the following quasilinear
Dirichlet problem

−∆pu − µ(x)∆qu = a|u|q−2
u − g(x, u, ∇u) in Ω ,

u = 0 on ∂Ω ,
(Pµ,a)

with 1 < q < p < +∞, a > 0, and a weight function µ : Ω → R with µ ∈ L∞(Ω) and ess infΩµ > 0.
Here, for r = p, q, ∆r stands for the r-Laplace differential operator. The case µ ≡ 1 is fundamental giving
rise to the problem driven by the (p, q)-Laplacian. In the statement of (Pµ,a) we also have a Carathéodory
function g : Ω × R × RN → R, i.e., g(·, s, ξ) is measurable for all (s, ξ) ∈ R × RN and g(x, ·, ·) is continuous
for a.a. x ∈ Ω , describing dependence on u and its gradient ∇u which is called convection term. We say
that u ∈ W 1,p

0 (Ω) is a weak solution of problem (Pµ,a) if it fulfills∫
Ω

|∇u|p−2∇u · ∇φdx +
∫
Ω

µ(x)|∇u|q−2∇u · ∇φdx

= a

∫
Ω

|u|q−2
uφdx −

∫
Ω

g(x, u, ∇u)φdx for all φ ∈ W 1,p
0 (Ω).

(1.1)
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Problem (Pµ,a) belongs to the class of quasilinear elliptic equations

div A(x, u, ∇u) = f(x, u, ∇u) in Ω ,

u = 0 on ∂Ω ,
(1.2)

with Carathéodory mappings A : Ω ×R×RN → RN and f : Ω ×R×RN → R. Generally, (1.2) does not have
variational structure, so non-variational methods must be used, see Averna–Motreanu–Tornatore [1], Carl–
Le–Motreanu [2], Faraci–Motreanu–Puglisi [3], Faria–Miyagaki–Motreanu [4], Faria–Miyagaki–Motreanu–
Tanaka [5], Motreanu [6], Motreanu–Tornatore [7] and Tanaka [8]. A leading part is represented by the
sub–supersolution approach, which in addition allows the location of solutions within ordered intervals
determined by sub–supersolutions. This enclosure principle is useful for instance to find positive solutions.
A frequent assumption is that f(x, s, ξ) in (1.2) is bounded from below with respect to s > 0 near zero by
a term of order sr with r < q − 1, see Faraci–Motreanu–Puglisi [3], Faria–Miyagaki–Motreanu [4], Faria–
Miyagaki–Motreanu–Tanaka [5], Motreanu [6], Motreanu–Tornatore [7] and Tanaka [8]. Such a condition is
not applicable to (Pµ,a) due to the term a|u|q−2

u matching the weighted q-Laplacian µ(x)∆q.
The objective of the present paper is to establish the existence of a positive solution and of a negative

solution to problem (Pµ,a) through an adequate set-up for the method of sub–supersolution. As mentioned
before, these results cannot be deduced from what it is known for the more general problem (1.2). Our main
contribution consists in dealing with the possibly concave term a|u|q−2

u against the convection g(x, u, ∇u).
There is a balance between the roles of the reals p and q. For instance, we argue in the space W 1,p

0 (Ω) but
assume that the parameter a is above the first eigenvalue of −∆q with weight µ. We are able to provide
precise bounds for the obtained solutions. Moreover, we show the existence of extremal (i.e., the greatest
and smallest) solutions in relevant ordered intervals.

2. Preliminaries

For a bounded domain Ω ⊂ RN and a real 1 < r < +∞, we denote by W 1,r(Ω) and W 1,r
0 (Ω) the usual

Sobolev spaces. Recall that the negative r-Laplacian −∆r is the mapping −∆r : W 1,r
0 (Ω) → (W 1,r

0 (Ω))∗ =
W −1,r′(Ω) given by

∆ru = div
(

|∇u|r−2∇u
)

.

Regarding the weighted eigenvalue problem

−µ(x)∆ru = λ|u|r−2
u in Ω ,

u = 0 on ∂Ω ,
(2.1)

with λ ∈ R and a weight function µ : Ω → R as in (Pµ,a), we say that λ is an eigenvalue and u ∈ W 1,r(Ω)
an associated eigenfunction if u ̸= 0 and∫

Ω

µ(x)|∇u|r−2∇u · ∇φdx = λ

∫
Ω

|u|r−2
uφdx

for all φ ∈ W 1,r
0 (Ω). Based on the Ljusternik–Schnirelman principle, see, e.g., Lê [9], we can construct

a sequence {λn,r,µ}n≥1 of eigenvalues for problem (2.1). The first eigenvalue λ1,r,µ admits the variational
representation

λ1,r,µ = inf
u∈W

1,r
0 (Ω),u̸=0

{∫
Ω

µ(x)|∇u|rdx∫
Ω

|u|rdx

}
> 0. (2.2)

In the study of problem (Pµ,a), we make use of (2.2) in the case r = q.
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An element v ∈ W 1,p
0 (Ω) with v

⏐⏐
∂Ω

≥ 0 (v
⏐⏐
∂Ω

≤ 0) is a supersolution (subsolution) of problem (Pµ,a) if
it satisfies ∫

Ω

|∇v|p−2∇v · ∇φdx +
∫
Ω

µ(x)|∇v|q−2∇v · ∇φdx

≥ (≤) a

∫
Ω

|v|q−2
vφdx −

∫
Ω

g(x, v, ∇v)φdx

(2.3)

for all φ ∈ W 1,p
0 (Ω) with φ ≥ 0. Corresponding to an ordered pair u ≤ u a.e. in Ω consisting of a subsolution

u and a supersolution u for problem (Pµ,a), we introduce the ordered interval

[u, u] =
{

u ∈ W 1,p
0 (Ω) : u(x) ≤ u(x) ≤ u(x) for a.a. x ∈ Ω

}
. (2.4)

The positive and negative parts of any r ∈ R are denoted by r±, that is, r± = max{±r, 0}. In the sequel,
for any r > 1 the notation r′ stands for the Hölder conjugate of r, i.e., r′ = r/(r − 1). In particular, this
applies to the Sobolev critical exponent p∗ with its conjugate (p∗)′. Recall that p∗ = pN

N−p if N > p and
p∗ = +∞ if N ≤ p. For a later use, it is worth pointing out that p − 1 < p/(p∗)′. The strong convergence
and the weak convergence are denoted by → and ⇀, respectively.

3. Two solutions of opposite constant sign

The following conditions on the nonlinearity g : Ω × R × RN → R in (Pµ,a) are required:

H(g) g : Ω × R × RN → R is a Carathéodory function satisfying

(i) there exist constants b > 0 and δ > 0 such that

g(x, s, ξ)s ≤ b|s|p (3.1)

for a.a. x ∈ Ω , for all |s| ≤ δ, for all ξ ∈ RN , and(a

b

) 1
p−q ≤ δ; (3.2)

(ii) there exist constants M > 0, γ ∈ [0, p
(p∗)′ ) and c1, c2 ≥ δ, with δ > 0 in (i), for which one has

acq−1
1 ≤ g(x, c1, 0) for a.a. x ∈ Ω , (3.3)

−acq−1
2 ≥ g(x, −c2, 0) for a.a. x ∈ Ω , (3.4)

|g(x, s, ξ)| ≤ M (1 + |ξ|γ) for a.a. x ∈ Ω , (3.5)

for all |s| ≤ max{c1, c2} and for all ξ ∈ RN .

Theorem 3.1. Assume that hypotheses H(g) hold. If a > λ1,q,µ, then problem (Pµ,a) has at least two
solutions u, v ∈ C1,β(Ω) of opposite constant sign satisfying

0 < u ≤ c1 and − c2 ≤ v < 0 in Ω ,

with some β ∈ (0, 1), where c1 and c2 are given in (3.3) and (3.4).

Proof. We start with the existence of a positive solution through the method of sub–supersolution. To this
end we formulate the auxiliary problem

−∆pu − µ(x)∆qu + b|u|p−2
u = a

(
u+)q−1 in Ω ,

u = 0 on ∂Ω ,
(3.6)
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for b > 0 as in assumption H(g)(i). Notice that (3.6) has variational structure and its corresponding energy
functional J+ : W 1,p

0 (Ω) → R is expressed as

J+(w) = 1
p

∫
Ω

(|∇w|p + b|w|p) dx + 1
q

∫
Ω

µ(x)|∇w|qdx − a

q

∫
Ω

(
w+)q

dx.

Since p > q and b > 0, the functional J+ is coercive and weakly sequentially lower semicontinuous. Hence a
global minimizer u+ ∈ W 1,p

0 (Ω) of J+ exists. It follows that u+ is a weak solution of problem (3.6), that is,∫
Ω

|∇u+|p−2∇u+ · ∇φdx +
∫
Ω

µ(x)|∇u+|q−2∇u+ · ∇φdx

+ b

∫
Ω

|u+|p−2
u+φdx = a

∫
Ω

(
(u+)+

)q−1
φdx for all φ ∈ W 1,p

0 (Ω).
(3.7)

The hypothesis a > λ1,q,µ, in conjunction with (2.2) for r = q, enables us to fix w ∈ W 1,p
0 (Ω) with w > 0

a.e. in Ω such that
λ1,q,µ <

∫
Ω

µ(x)|∇w|qdx∫
Ω

wqdx
< a. (3.8)

From (3.8) and q < p, for t > 0 sufficiently small, we get

J+(tw) = tp

p

∫
Ω

(|∇w|p + bwp) dx + 1
q

tq

∫
Ω

µ(x)|∇w|qdx − a

q
tq

∫
Ω

wqdx < 0.

We infer that J+(u+) < 0, thus the solution u+ of (3.6) is nontrivial.
Testing (3.7) with φ = − (u+)− we see that u+ ≥ 0. Then, in view of (3.6), u+ is a weak solution of

−∆pu − µ(x)∆qu + bup−1 = auq−1 in Ω ,

u ≥ 0 in Ω ,

u = 0 on ∂Ω .

(3.9)

Through Moser’s iteration, see, e.g., Marino–Winkert [10], applied to (3.9) we note that u+ ∈ L∞(Ω). At
this point, the regularity up to the boundary, see Lieberman [11, p. 320], ensures that u+ ∈ C1

0 (Ω) \ {0}.
Then, the strong maximum in Motreanu [6, Theorem 2.19] enables us to conclude that u+ > 0 in Ω .

Let us act with φ = uα+1
+ as test functions in (3.9) for each α > 0. By Hölder’s inequality, this leads to

b

∫
Ω

up+α
+ dx ≤ a

∫
Ω

uq+α
+ dx ≤ a

(∫
Ω

up+α
+ dx

) q+α
p+α

|Ω |
p−q
p+α ,

where |Ω | denotes the Lebesgue measure of Ω . This results in

b∥u+∥p−q

Lp+α(Ω) ≤ a|Ω |
p−q
p+α .

Letting α → +∞ implies
b∥u+∥p−q

L∞(Ω) ≤ a. (3.10)

Using (3.1), (3.2), (3.10) and the fact that u+ is a solution of (3.9), we find

−∆pu+ − µ(x)∆qu+ = auq−1
+ − bup−1

+ ≤ auq−1
+ − g(x, u+, ∇u+).

According to (2.3), this means that u = u+ is a subsolution of problem (Pµ,a).
Thanks to assumption (3.3) it turns out that u ≡ c1 is a supersolution of (Pµ,a). By means of (3.10) and

(3.2), as well as the assumption c1 ≥ δ, we note that

u(x) ≤ ∥u∥L∞(Ω) ≤
(a

b

) 1
p−q ≤ δ ≤ c1 = u(x) for all x ∈ Ω .
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We have thus a subsolution u and a supersolution u of problem (Pµ,a) satisfying u ≤ u. Therefore, taking
into account (3.5), the general method of sub–supersolution for quasilinear elliptic equations as presented in
Motreanu–Tornatore [7, Theorem 3.1] (see also Carl–Le–Motreanu [2, Theorem 3.17]) can be carried out to
problem (Pµ,a) with the ordered pair u ≤ u. It gives the existence of a weak solution u with the enclosure
property 0 < u+ ≤ u ≤ c1. Again by the nonlinear regularity up to the boundary, we have that u ∈ C1,β(Ω)
with some β ∈ (0, 1).

Let us prove the existence of a negative solution to problem (Pµ,a). Consider the auxiliary problem

−∆pu − µ(x)∆qu + b|u|p−2
u = −a(u−)q−1 in Ω ,

u = 0 on ∂Ω .
(3.11)

The energy functional J− : W 1,p
0 (Ω) → R associated to (3.11) is defined by

J−(v) = 1
p

∫
Ω

(
|∇v|p + b|v|p

)
dx + 1

q

∫
Ω

µ(x)|∇v|qdx − a

q

∫
Ω

(
v−)q

dx.

As before we can show that there exists a global minimizer v− of the functional J−, which is a nontrivial
weak solution of (3.11) belonging to C1

0 (Ω). Upon acting on (3.11) with (v−)+, it readily follows that v−
turns out to be a negative weak solution of (3.11). Along the lines of the first part of the proof, arguing this
time with the test function φ = |v−|αv− in (3.11) for each α > 0, we arrive at

b∥v−∥p−q
L∞(Ω) ≤ a. (3.12)

Through (3.11), (3.1), (3.2), and (3.12), we find that

−∆pv− − µ(x)∆qv− = a|v−|q−2
v− − b|v−|p−2

v− ≥ a|v−|q−2
v− − g(x, v−, ∇v−).

This amounts to saying that v− is a negative supersolution of problem (Pµ,a).
From (2.3) and (3.4), it is clear that the negative constant −c2 is a subsolution of problem (Pµ,a). On the

basis of (3.2), (3.12) and because c2 ≥ δ, we see that

−c2 ≤ −δ ≤ −
(a

b

) 1
p−q ≤ −∥v−∥L∞(Ω) ≤ v−(x) for all x ∈ Ω .

On account of (3.5), we are thus able to implement the method of sub–supersolution in the form of Motreanu–
Tornatore [7, Theorem 3.1] (see also Carl–Le–Motreanu [2, Theorem 3.17]) to the quasilinear elliptic problem
(Pµ,a) with the ordered pair −c2 ≤ v−, which leads to the existence of a weak solution to (Pµ,a) with
−c2 ≤ v ≤ v− < 0 in Ω . The fact that v ∈ C1,β(Ω) for some β ∈ (0, 1) is the consequence of the nonlinear
regularity theory up to the boundary applied to problem (Pµ,a) with the weak solution v. The proof is
complete. □

Finally, we focus on extremal solutions to problem (Pµ,a).

Corollary 3.2. Under hypotheses H(g) and a > λ1,q,µ, problem (Pµ,a) possesses extremal solutions (i.e., the
smallest and greatest solution) in each of the ordered sub–supersolution interval [u, u] obtained by Theorem 3.1.

Proof. We only prove the existence of the smallest solution in the ordered interval [u+, c1]. The proof for
the existence of the greatest solution in [u+, c1], as well as for the extremal solutions in the ordered interval
[−c2, v−], can be done analogously.

Denote by S the set of solutions to problem (Pµ,a) belonging to [u+, c1]. Theorem 3.1 ensures that S is
nonempty. It is well-known that there exists a sequence {un}n≥1 in S such that with respect to the pointwise
order in W 1,p

0 (Ω) and the pointwise convergence it holds

inf S = lim
n→∞

un. (3.13)



D. Motreanu and P. Winkert / Applied Mathematics Letters 95 (2019) 78–84 83

Since un ∈ S, by (1.1), it satisfies (1.1), that is∫
Ω

|∇un|p−2∇un · ∇φdx +
∫
Ω

µ(x)|∇un|q−2∇un · ∇φdx

= a

∫
Ω

|un|q−2
unφdx −

∫
Ω

g(x, un, ∇un)φdx for all φ ∈ W 1,p
0 (Ω).

(3.14)

If we insert φ = un in (3.14) and use that the sequence {un}n≥1 is uniformly bounded, namely u+ ≤ un ≤ c1
(see (2.4)), by (3.5) we infer that∫

Ω

|∇un|pdx +
∫
Ω

µ(x)|∇un|qdx ≤ a

∫
Ω

|un|qdx + C

∫
Ω

(1 + |∇un|γ)dx,

with a constant C > 0. Due to γ < p, it turns out that the sequence {un}n≥1 is bounded in W 1,p
0 (Ω), thus,

up to a subsequence, un ⇀ u for some u ∈ W 1,p
0 (Ω). Through (3.14) with φ = un − u, in conjunction with

(3.5) and Hölder’s inequality, we derive that

lim sup
n→∞

∫
Ω

|∇un|p−2∇un · ∇(un − u)dx ≤ 0.

Then the S+-property of −∆p on W 1,p
0 (Ω), see Carl–Le–Motreanu [2, Theorem 2.109], implies the strong

convergence un → u in W 1,p
0 (Ω). We can pass to the limit as n → ∞ in (3.14), whence u ∈ S. In view of

(3.13), the desired conclusion ensues. □

We end the paper with a simple example of term g(x, s, ξ) in problem (Pµ,a) verifying assumptions H(g).
For simplicity we drop the dependence on x ∈ Ω in g(x, s, ξ).

Example 3.3. Let 1 < q < p < +∞, a weight function µ : Ω → R with µ ∈ L∞(Ω) and ess infΩµ > 0,
and a > λ1,q,µ, for which we state problem (Pµ,a). For fixed constants b1, b2 ≥ a, 0 < r1, r2 < p − 1,
γ1, γ2 ∈ [0, p

(p∗)′ ) and d1, d2 > 0, we introduce the continuous function g : Ω × R × RN → R by

g(x, s, ξ) =
{

−asr1 + b1sp−1 − d1|ξ|γ1s if s ≥ 0
asr2 − b2|s|p−1 − d2|ξ|γ2s if s < 0.

Condition H(g) is satisfied taking for instance δ = 1, b = max{b1, b2}, γ = max{γ1, γ2} and a sufficiently
large M > 0.
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